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INTRODUCTION

The aim of these notes 1s to introduce the reader to some
mathematical models of economic planning on a national scale,
and to a number of theoretical results on the properties of
optimal economlc programs.

In addition to describing a falrly general framework for the
mathematical analysis of economic planning, I describe a number
of special models (Chapters I and II). These models have in com-
mon the following features:

(1) They elther have been used in applications, or appear

to have promise of applicabllity.

(2) Planning is formulated in terms of real goods and ser-
vices, or index numbers of real quantitles, rather than
in terms of financlal magnitudes.

(3) The models can, in principle, be used with a relatively
high degree of dlsaggregation by commoditles.

The theoretical results presented are of two types. First,

I review some of the literature concerning the properties of
optimal paths of economic growth. In this literature, an impor-
tant toplc 1s the role of shadow prices and interest rates as
indicators of optimality (Chapters III and V). Much attention
has also been given to proportional (balanced) growth, and the
tendency of optimal programs to approximate proportional growth
(Chapter V).

The second group of results, which have not been previously
published, concern a rather special model — special with regard
to both the description of production posslibilities and the cri-
terion of optimality. For this model I discuss in some detall
the properties of optimal programs (Chapter IV). For both finite
and infinite planning horizons, I give formulas for optimal time

sequences of consumption, investment, and allocation of resources.

The long-run growth rates, directions of growth, and shadow inter-
est rates are also gilven. Uslng these results one can study the
way in which the optimal path depends upon the various parameters
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of the technology and of the preference criterion. In particular,
one can get some interesting results about the influence of time
preference.

The results for this speclal case illustrate the various
general theorems mentioned above. In addition, the speclal case
1s general enough, and the computatlions required to determine the
optimal programs are simple enough, to make the model appear
attractive for applied work.

I have trlied to present the various theorems in a fairly
precise fashlion, and therefore have adopted a mathematical pre-
sentation. On the other hand, I have included proofs in only a
few of the simplest cases. This limitation was a consequence of
the time limits of the lectures for which these notes were writ-
ten, and of the interests of the audience.+ Readers who are in-
terested 1in proofs can follow up the references to the literature,
except 1n the case of Chapter IV. 1In that chapter I have glven
some indications of the method of solution, since I use the tech-
nique of "dynamic programming", and this technique is relatively
new to the theory of economic planning. (A paper giving complete
proofs of the results in Chapter IV will be available soon.)

Limitations on the Scope of the Theory Presented

The literature on the theory of economic planning, though
primitive in many respects, still covers a wide field of topics,
of which only a few are included in these notes. I should try to
make clear at the beginning the limitatlions that have been im-
posed, again by lack of time, and also by the limits of my own
competence.

(1) The theories presented are intended to apply primarily
to planning on & national scale.

(2) The planning considered i1s "technological" in the sense
that the planning takes place within technological, but not be-
havioristic or financlal, constraints. Thus, I do not explicitly
consider models of autonomous determination of the behavior of

*An elementary knowledge of the differential calculus and matrix
algebra should enable the reader to follow these notes.
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economic agents such as consumers and investors. It 1s difficult,
of course, to make a sharp distinction between technological and
behavioristic determinants in the economy; for example, whether
one treats the consumption of food as a planned input into the
actlvity of producing labor, or as determlined by a demand func-
tion for food, will depend upon institutional features of the
particular problem being considered. Even in a free market econ-
omy, however, there is some interest in comparing the hypothetical
results of a technologically planned program with the historical
or projected development of the economy.

(3) The models considered are aggregate in terms of indi-
viduals (consumers, firms). Planning is discussed in terms of
total consumption or total production of the various commodities.

(4) There is no discussion of techniques for decentralizing
the planning process or the process of carrylng out the plan.
(However, one result of Chapter III, Section 1, bears on this
point, and I also glve some references to the literature on the
subject.)

(5) There is no discussion of uncertainty. 1Indeed, there
has been practically no theoretical investigation of uncertainty
in economic planning.+

Plan of the Notes

A necessary step 1n the mathematical analysis of a planning
problem is, of course, a precise formulation of the problem. 1In
the approach that I have followed, the specification of the prob-
lem can be divided into two parts, a specification of the set of
programs that are technologically feasible, and a specification
of the criterion to be used in comparing alternative programs.
These two tasks are interrelated in so far as the type of cri-
terion used is limited by the terms in which one describes the
programs. For example, 1f consumption is described only 1n terms
of total consumption of each commodity, then one cannot compare

+See, however, J. Mirlees, "The influence of uncertainty on the
optimum rate of investment," Ph.D. Dissertation, Cambridge Uni-
versity, Cambridge, England, 1962.
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programs on the baslis of the distribution of consumption among
individual consumers. Chapter 1 presents a general framework for
the description of technological possibilities, in a dynamic con-
text, together with a number of specilal cases, including linear
activity analysis, the dynamic input-output model, and certain
special production functions. Chapter II dlscusses an array of
alternatlve criteria for comparing programs. In particular, some
attention is given to the problem of defining criteria for pro-
grams with an infinite horizon.

Certain criteria are of interest, not because they directly
express value judgments about an economic program, but because it
is hoped that thelr use will lead to the selection of programs
that are preferred in some more basic sense. I have in mind here
such criteria as present value, rate of return, and the benefit-
cost ratio. In Chapter III, under the heading "Derived Criteria",
I discuss the rationale, or lack of rationale, for the use of
these criteria.

In Chapter IV I fit together various elements introduced 1in
Chapters I and II in the form of a complete, but specilal, model,
and I discuss in some detail the calculation and properties of
optimal programs for this speclal case.

Much of the recent literature on the theory of optimal eco-
nomic growth deals with proportional growth, and in particular
with the following two questions: (1) What is the relation between
the rate of growth and the shadow rate of interest in an optimal
proportional growth program? (2) Is there any tendency for optimal
economic programs to approximate proportional growth programs in
the long run? Our current knowledge of the answers to these ques-
tions is far from complete; the results reviewed in Chapter V
would suggest the following tentative conclusions: (1) For an op-
timal proportional growth program, the shadow rate of interest
will be at least as large as the rate of growth. (2) An optimal
program will typically tend towards proportional growth in the
long run, provided there are no primary resources in the economy,
or provided all primary resources grow at the same (constant) rate.
It should be emphasized that so far theorems of this type have been
proved only under falrly speclal assumptions, including the assump-
tions of constant returns to scale, and constant technology.
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I. DESCRIPTION OF AN ECONOMIC SYSTEM IN TIME

1. Introduction

Any preclse discussion of economic planning must take place
in a context in which the alternative paths of economic develop-
ment are precisely described. Therefore this first chapter 1is
devoted to a review of some of the more important theoretical
models of an economy in time. The emphasis will be on describing
the production and consumption possibilities, especlally the
former. Consumption will be discussed again in the next chapter,
whlch 18 devoted to the problem of describling preferences among
alternative economlic programs.

A model of an economy in time should be capable of describing,
in addition to the usual features of a static model, such phenom-
ena as'durability, aglng, storage, waiting, as well as the sequen-
tial aspects of production, from raw materlals and labor, through
investment goods and intermediate goods, to consumption goods. A
special case of importance 1s that. of education.

In my opinion, the most general and potentially useful frame-
work is the one in which one tries to describe the possibllities
of transforming the economy from one period to the next. This
approach has a minimum of conceptual problems, and lends 1tself
most easlly to technical measurement. Other models, based upon
the ideas of "waiting" or "gestation" have, for me, an element of
mystery, unless based in turn upon a model of technological trans-
formation.

Finally, one wants to be able to describe technological
change and learning. In other words, having described the tech-
nological possibilities for the evolution of an economy, one may
go a step further and try to describe the ways in which these
technological "laws" change in time.

One technical point to be mentioned is that I have chosen
the discrete time - or period analysis - approach in these notes,
a8 opposed to the use of continuous time. The former 18 concep-
tually simpler, and can also be used with more elementary mathe-
matical tools.
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2. Commodities

We start with a fixed list of commodities, numbered 1 to M.
The concept of "commodity" i1s to be interpreted rather generally,
including capital goods, intermediate goods, consumer goods (in
so far as these distinctions make sense), land of different types,
and labor of different types and skills. Goods are to be distin-
gulshed by their physical qualities, including age and locatlon.
Indeed, all distinctions that could be important from the point
of view of production, consumption and:trade are, in principle,
to be embodled in the classification used.

It should be pointed out that the assumption of a filnite
list of commodities implles that if the other physical qualities
of a commodity change with age, then that commodity cannot last
forever. It should also be mentioned that certain models of
technological change require, 1n essence, an infinite 1list of

commodities.

3. Production and Consumption Possiblllties

Suppose that at the beginning of any given period, there 1is
avallable a stock zy of commodity 1. A certain quantity, Cy» 1s
devoted to consumption, and the rest, X4 18 used as an input
into the productive process (including use as inventory, stock of
machines, etc.). Given zi, one must of course have

iy

Ci+xi=zi, Ci O,Xi;O-
If ¢ denotes the vector with components Cy>» etc., then one can
rewrlte the above as

(3.1) c+x=2, c2>0, x20.

Given the input vector x, 1.e. having determined the gross
allocation between consumption and production, it remains to de-
termine how to use x in the productive process. The outcome or
result of the productive process, at the end of the period in
question, will be some vector y of quantities of commodities, the
output vector.
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To the output vector y may possibly be added a vector q of
quantities of commodities made availlable exogenously (primary re-
sources, grants from outside the economy, etc). The resulting
sum (y+q) 18 then available as the new initial stock vector for
the succeeding perilod.

Glven any input x, only certain outputs y are technologically
possible. One says that an input-output pair (x,y) is feasible 1if
it is possible to produce y from x in one period. We may denote
the set of all feasible input-output pairs by the symbol J . The
set J 1s sometimes called the technological transformation set or
production possiblility set.

The concept "production" is to be interpreted very generally,
including in principle all transitions of the state of the system
that are economically interesting. In particular, it includes the
phenomena of storage and aging, with or without associated physical
changes.

Indeed, for certain purposes it may be useful to treat "con-
sumption" itself as part of the productive process, Jjust as we
treat the consumption of corn by hogs. However, 1n most present-
day socleties a purely technologlical treatment of consumption
would not seem appropriate.

At the cther extreme, one often divides goods into "consumer
goods" and "investment and production goods", so that in such an
approach many components of the vectors ¢ and x would be zero
(and not the same ones!). However, in principle, any commodity
can be used for both consumption and production (e.g. automobiles).

y, Economic Programs

We consider now a sequence of periods t = 1, 2, ..., T (where
T may be finite or infinite), with a given initial stock vector
z(1). Also, in every period t > 2, a vector q(t) 2 O 1s fed into
the system exogenously.

A feaslble program 18 a sequence of T quadruples

[z(t), c(t), x(t), y(t)]

satisfying the technologlcal and accounting constraints:
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c(t) + x(t) = z(t),

c(t) and x(t) 2 0, t=1, ..., T,
[(x(t),y(t)] 1n T,

and
z(t) = y(t-1) + q(t), t =2, vouy T

An economic program may be wholly or partly planned, or
wholly determined by autonomous behavior. For example, consump-
tion c(t) may be determined as a function of z(t) by a free mar-
ket system (as described by demand functions, Engel curves, con-
sumption functions, etc.), whereas production y(t) may be cen-
trally planned, as a function of x(t) = z(t) - c(t).

In the followlng sectlons I review some special models of
production possibillities.

5. Linear Activity Analysis Model of Production Possibilities’

Suppose that there are N production activities j = 1,...,N,
and denote the "level" of activity J by ay 2 0. Both input and
output vectors are linear transformations of the activity vector
a, thus:

N
Xy = =z riJaJ
(5.1) 1 =1, ..., M

Y. = £ p,.a
h | J=1 1373

In matrix notation we have

x=Ra,

(5.2)
y = Pa.

*See KOOPMANS, 1951, 1957. A 1list of references is placed at the
end of each chapter, and a combined 1ist 1s placed at the end of
the book.
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It 18 usual to take account of the possibilities of "throwing
away" goods, or of unemployment, by replacing the equality signs
in (5.2) by inequality signs:

x > Ra,

(5.3)
y = Pa.

The coefficlients riJ and piJ are assumed to be 2 0. The coeffi-
13 is the input of commodity 1 requlred to operate activity
J at unit level. The coefficlent piJ 18 the output of commodity 1
when activity J 18 operated at unit level.

The set .7 of feasible input-output pairs is the set of pairs
(x,y) that satisfy (5.3) for some non-negative vector a of activ-
1ty levels.

Condition (5.3) implies, but 18 not implied by, the following
condition:

cient r

(5.4) y = x + (P-R)a.

For example, if all of the elements of (P-R) were non-negative,
and some were positive, then (5.4) could be sat: ified by & posi-
tive output vector y, with a zero input vector x. The economic
interpretation of the sense in which (5.3) is stronger than (5.4)
is that the inputs x > Ra must be avallable at the beginning of

the period in which the output y < Pa 18 produced.

The Linear Activity Analysis (LAA) model is a very general
one, except for the finiteness of the number of activities. It
1s well adapted to statistical measurement, and in the computation
of economic programs one 18 led to the techniques of linear pro-
gramming.

The following example 1s meant for expository purposes only.

Example: "Shoe Production”

Suppose there are 5 commodities: 1labor, leather, shoes, new
machines, and second-hand machines. A machine lasts for only two
periods. Let activity 1 be the production of shoes using new
machines.



Input
Commodity Coefficientsr,,
1. Labor ryp c 2
2. Leather rpy = 1000
3. Shoes r31 =0
k. New Machines ry; =1

5. Second-hand Machines r51

=0

I-6

Output

Coefficients p
11

Py; =0

Py = O

p31 = 500

Py; = O

p51=1

Let activity 2 be production of shoes using second-hand

machines.
Input Output

Commodity Coefflcients Pyo Coefficients Pyp
1. Labor 3 0

2. Leather 1000 0

3. Shoes 0 400

4. New Machines 0] 0

5. Second-hand Machines 1 0

If two new machines were provided every year, one could have

two new and two used machines in every period,
period one could use the activity vector (g).

be
/2 3
/ 1000 1000
Ra = | 0 0
: 1 0
0 1 /

and outputs would be

0] o)

0] 0
Pa = 500 400

0] 0

1 o

| (3) -

10

4000

0
2
2

8o that 1n every
Then inputs would
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Unless labor, leather, and new machines were provided exoge-
nously, column vectors describing thelr production would have to
be added to the input and output matrices R and P.

Note that for convenience I have chosen to measure each
activity by the number of machines used. This was arbltrary. I
might just as well have chosen any other unit, e.g., number of
shoes produced.

The LAA model easlly expresses joint production.

Example: "Meat Packing"

Commodity Input Coefflcients Qutput Coeffilclents
1. Labor 1 0
2. Cattle 5 0
3. Meat 0 2500
4. Hides 0 10
5. Bone 0 50

In this example there is only one activity, so that R and P are
each (5 x 1).

Storage of a commodity can be expressed by an activity with
identical input and output coefficlents:

input output
AR
Lo o ]
\ / !

\ o \o}

or, 1f there were 5 percent loss in storage, one would have

inEut output
;1 0.95
l’ 0 0 _
0 0
0 0

The LAA model has the property of constant returns to scale;
i.e., 1f (x,y) 1s a feasible input-output pair, then so is (Ax,\y)
for any non-negative number X. This 1s, of course, achleved by
multiplying all activity levels by Xx.
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In many cases, one may only be able to multiply by scale factors
A that are whole numbers. This would presumably be the case in
the example "Shoe Production", in which the number of machines
used must typilcally be an integer, so that the activity levels
must be integers. However, even in such cases 1t may be convenl-
ent to make the approximation of assuming that any non-negative
number 1s a possible activity level.

The LAA model also has the property of convexity or non-

increasing marginal productivity; i.e., if (x,y) and (x,y) are

feasible input-output pairs, then so 1s

(ax + [l-alX, ay + [1-aly) ,

for any o with 0 = a £ 1. This 18 achleved, of course, by using
the activity level vector aa + (1l-a)a, where a and a are the ac-
tivity level vectors corresponding to (x,y) and (X,y), respectively.

Exercise. Construct a hypothetical LAA model with the following
properties:

Commodities: land, labor, machine tools, agricultural machin-
ery, food. Assume that machine tools last 3 periods, and that ag-
ricultural machinery lasts 2 perlods. Assume that

a) machine tools are produced from labor,

b) agricultural machinery 1s produced from labor and

machine tools,

c) food 1s produced from land and labor, or from land,

labor, and agricultural machinery.
Provide two alternative activity vectors for the production of

food from land, labor, and agricultural machilnery.

If land and labor are glven exogenously in each period, this
induces certain constraints on the possible activity levels; what
form do these constraints take?

6. Dynamic Input-Output Model (Leontieff)

The so-called Dynamic Input-Output (DIO) model 1s a special
case of the Linear Activity Analysis model presented in the last
section. In the DIO model there 1s a one-to-one correspondence
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between commodities and activities, and each activity can be re-
garded as the activity of producing the corresponding commodity.
Thus the DIO model describes a situation in which there 1s no
Jjoint production. Also, one says that there are fixed input

proportions for the production of any one commodity.
Two kinds of input requirements are distinguished in the DIO
model: "flow" requirements and "stock" requirements. Although

stocks enter the model, durable goods are not distinguished
according to age, as 1is posslible in the more general LAA model.
One can consider two alternatlive versions of the DIO model.

Version I.

To produce 1 unlt of commodity J requires aj_:J units of com-
modity i, which amount 1s used up in the production process during
the current period. One requires in addition b1J units of commod-
ity 1, which amount 1s not used up, but 1s conserved as a stock.
Thus:

R

A+ B,
(6.1)

jae)
[}

I+ B,

where A = ((aij))’ B = ((bij))’ and I denotes the identity matrix.
The elements of B are called the "capital-output coefficients"”.

Verslion II.

In the second verslion, the flow requirements are entirely
met from current production, i.e. within the period 1n questilon,
80 that

R = B,
(6.2)

)
n

I - A+ B.

In both versions, 1f stocks suffer physical depreclation in
the form of loss (but not in the form of changed physical charac-
teristics), then this phenomenon can be described by replacing
the terms b1J in the output matrices by the terms diJ bij’ where
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dj_.j represents the depreclation factor, per period, for commodity
1 when used in the production of commodity J. In matrix notation,
let B = ((diniJ)); then one has

Version I R=A+B
P=I+8

Version II R =B
P=I-A+3B

7. Linear-Logarithmic Production Functions (Cobb-Douglas)

In the model to be described in this section, one retains
the assumptlion of no joint production for new goods, but, on the
other hand, one allows for the possibllity of variable input pro-
portions, and is able to describe the aging of durable goods.

The model is a multisector generalization of the model used by
Cobb and Douglas to descrilibe the productivity of labor and capl-
tal. In particular, the logarithm of output of each new commodity
18 a linear function of the logarlithms of the 1lnputs into that
Industry.

Let the commodities be divided into two groups, new (i.e.
newly produced) (1 = 1,...,N), and second-hand (i1 = N+1,...,M).

Production of New Commoditles. Let xiJ be the quantity of
commodity 1 devoted to the production of commodity J, and let yJ
be the output of commodity J; then

M
(7'1) log yJ = BJ + ifl ai,j log xij’ J = 1, e ey Nn
Assume a1J 2 0. PFurther, the assumption of constant returns to
scale, 1f appropriate, can be expressed by

= 1, J=121, ..., N.

7.2 Z2a
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If Xy 18 the total amount of commodity i1 devoted to (all)
production, then

N
(7.3) S Xy, = X4
j=1 1J 1
The production function (7.1) can be rewritten
M
B a
- Yy N ij
(7‘4) YJ - (e ) H xij ’
i=1

or, to take account of the possibility of disposal, with an in-
equality =<. Note that both new and second-hand inputs typically
enter as inputs into each function (7.4).

Aging and Depreclation. Assume that each commodity is used

up at a rate that depends upon the commodity and upon its age,
but not upon the use to which it is put. (In this model, commod-
itles can be distinguished by age.) If J represents a second-
hand commodity, then there is some other commodity in the 1list,
say j', that represents the same good of age one period less.
Assume that

ST
vy = (e )xJ,

or
(7.5) log yy = By + log x§ , J=N+1, ..., M.

Thus one can express an arbitrary age pattern of physical loss of
"durable" goods, in other words, an arbitrary distribution of
length of 1life.

Example: If commodity 4 18 a new machine, and commodity 5 is a
l-period-old machine of the same type, then one might have

y5 = (0.6)x4 ’

expressing the fact that 60 percent of the new machines survive
to the second period (here Bg = log 0.6). Furthermore, 1if no
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machines of age more than one period appear on the list, this

two periods.

expresses the fact that no machines of this type last more than

’ A Unifled Notation. One can simplify the notation, and ex-
press the production of new and old goods in a unified way as
. follows.
Let
(7.6a) X4 = fijxi’ 1 =1, .y M, =1, «.., N,
and for J = N + 1, «y» M define
1 if 1 18 the predecessor of J from )
_ _ the polnt of view of age (1.e. 1i=)J'
(7.6Dp) fij = aij =

0]

Also define+

YJ = log yJ, Xi =

otherwise.

log X4

A= ((ag4))
£ = ((£y4))
(7.60)1 nJ(f) = ¥ a4 log (fij),
P1
B = ( : ), X =<
L &

where single brackets denote vectors and double brackets denote

matrices.
expressed by

Then the production of both new and o0ld commodities 1is

*To avoid indeterminacy, make the convention that O0-:log O = O.
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(7.7) Y=p8+n(f) + A'X .

Note that fiJ is the proportion of the input of commodity 1
that is devoted to production of commodity J (not to be confused
with input proportions for a given industry!). Hence

N

go, 2 fiJ=l, i=1, "',MO

7.8 f
(1.8) 1y, z

Note, too, that nJ(f) =0for J=N+1, ..., M, 1.e. for

all of the second-hand commodities.

8. Constant Elastlicity of Substitutlon Production Function
(Arrow-Chenery-Minhas-Solow)

In the production of any single commodity, the Dynamlc Input-
Output model provides for no substitution of one input factor for
another. On the other hand, the Linear-Logarithmic production
function provides for substitution, but of a special form. For-
mally, the elasticity of substitution between any two inputs (see
ALLEN, pp. 340—343) is zero 1n the DIO model, and one in the LL
production function. A general class of production functions has
recently been proposed with the property of an arbitrary constant
elastlicity of substitutlon, and lncluding the fixed-proportions
and linear-logarithmic production functions as speclal cases.

This more general function promises to be of interest, but
it has not yet been incorporated in any planning model, and so
willl not be discussed here.

9. Technical Change

One may think of technical change as a change in the produc-
tion possibility set :r, or, more generally, as a change in both
the 1list of commodities and <J . 1In terms of the speclal models
discussed above, the first type of change would be expressed by
changes 1n the input and output coefficients, or by changes in
the parameters of the production functions. The second, more
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extensive, type of change would involve the introduction of new
goods, new equipment, and new activities or production functions.
We typlcally think of technical change in terms of improve-
ment; e.g., this may take the form of a decrease in some input
coefficient or an increase 1n some output coefficlent. Of course,
we also hear of examples of technical "decline", e.g., the so-
called "lost arts" of making fine swords or stained glass windows.

Neutral Technlcal Change. One calls technical change of the
first type neutral if, roughly speaking, it affects "equally" the
productivities of the various input factors. For example, 1f an
activity produces one output, and that output coefflclent is in-
creased, whereas the input coefficlents are left unchanged, then
the resulting technical change 18 neutral.

If one 1s using a production functlion model, let the produc-

tion function for a partlicular commodity be

(9-1) Y = b&(Xqs--csxy);

then a change in b might be called neutral.
A more specific meaning of neutrality 1s the following.

Let il, ceey ﬁM be the input quantities that minimize the cost of
producing a gilven quantity of output §, at glven input prices
Pys cv+s Py Now conslder a change in the production function,

and look for the new minimum cost inputs to produce the same
quantity §, with prices unchanged. The technical change 1s
called neutral if the new cost-minimlzing input quantitles are
proportional to the old ones.

If the production function in (9.1) exhibits constant returns
to scale, 1l.e., 1f the function f 18 homogeneous of degree 1, then
a change in the parameter b will be neutral in the more specific
sense Jjust defined.

Improvement of Capital Equipment. Even without any change
in the list of consumption goods, the most widely held view cur-
rently is that advances 1n technical knowledge about the produc-
tion of consumer goods are largely embodied in new capital equip-
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ment — and in the corresponding newly required labor skills.
This involves additions to the 1list of commodities, and corre-
sponding additions to the 1list of activities.
As an example, I sketch a model used by ARROW. Consider the
following "commodities™:
aggregate output
labor
capital goods of type 1, 2, 3, etec., ad inf.
Imagine that capital goods of type t are built at time t, and
embody the "latest improvements" in technology. One unit of
capltal of type ¢
a) requires L(t) units of labor input,
b) yilelds P(t) units of output,
¢) has a gilven lifetime.
Technical improvement might be expressed by:
L(t) decreasing or constant,
P(t) increasing.
Arrow makes the speclal assumptions:
L(t) constant
-n
P(t) = pt ’
where p and n are positive constants. The assumption about P(t)
is suggested by some experience in the U.S. aircraft industry.
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CHAPTER II
BASIC CRITERIA FOR CHOOSING AMONG ECONOMIC PROGRAMS

1. What 1s Important about an Economic Program?

In developlng criteria for cholce among alternative economic
programs, one may ask two questions:

1) What aspects of the program are to be looked at in
making a cholce?

2) Having decided which are the important aspects, how
precisely are they to be combined and evaluated?

Current dilscussion of economlic planning seems to concentrate
on the following basic aspects (basic from the point of view of
preference among programs):

1) Total or per-caplta income
i1) Composition of income

111) Distribution of income
iv)  Employment

One 1s, of course, concerned with the time pattern of all of these.
One might be tempted to include a fifth aspect when one 1s
discussing programs with a finite horlizon, namely, the terminal
stocks that are to be carried forward at the end of the program.
This aspect is not basic, however, in the same sense as the above
four are, since the value attached to such terminal stocks is
typically derived from their power to produce income in the period

beyond the horizon.

Under aspects (1) and (11), one looks at the sequence of vec-
tors of quantities of commodities designated for consumption in
each period (denoted by c(t) in Chapter 1), with or without divid-
ing by the population number. If population is determined exoge-
nously, i.e. is not affected by the cholce of an economic plan,
thcn increasing total income and increasing per-capita income are
equivalent. But if population growth (or decline) depends upon
the program chosen, then population must typically enter the llst
of "commodities", and maximizing total and per-caplita income will
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typically not be equivalent. Indeed, maximizing per-capita in-
come may lead to (possibly) soclally unacceptable programs, in-
volving, for example, restricting births, or even killing a part
of the population!

The remaining sectlons of thls chapter are devoted to an ex-
posltion of some means of describing or expressing preferences
among alternative sequences of consumption. However, a word
should be sald here about a certain basic difficulty in arriving
at a satlsfactory deflnition of consumption. The models described
in Chapter I have in common the feature that the activities of
consumption and productlion are in a certain sense independent —
from a mathematical point of view one might say they are additive.
More precisely, recall that the beglnning-of-period stock zy of
each commodlty 1s divided 1nto two parts, Cy and Xy the quantity
cy being "consumed", and the quantity x; being used as an input
into production. 1In particular, one has the accounting 1ldentity,

It seems to me doubtful, however, that in every case one can
achleve such an algebraic separation of consumption and production.
F>r example, the consumptlon of food is valued in itself by many
consumers, but at the same time variations in the consumption of
food may well affect the productivity of labor, and therefore be
properly included in the vector x of inputs. 1In splite of this
type of difficulty, the assumption of the separability of consump-
tion and productive inputs will be retained in these notes, in
view of 1ts consistency with conventional income accounting proce-
dures, and in the hope that the resulting errors are not too sig-
nificant.

Employment goals are typically connected with 1ncome distri-
bution goals. On the one hand, it is usual to find workers strug-
gling to obtain shorter working hours (for the same pay, of course).
On the other hand, it 18 very 1likely, 1in Western cultures at least,
that most people would want some employment, even if such employ-
ment were not necessary to obtaln an acceptable income! If lei-
sure 1s regarded as non-productive consumption of a s8tock of
labor, then thls last point 18 a speclal case of the preceding
paragraph.
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However, in the present, far-from-Utoplan state of the world,
unemployment 18 considered bad primarily because of the resulting
low incomes of the unemployed. Unemployment 1s also considered
bad because 1t is thought of as wasteful. But thils evaluation is
"derived" rather than "basic" in the sense that there may be sit-
uations in which maximization of total income requlres some unem-
ployment. 1In other words, whether or not unemployment 1s wasteful
depends upon the particular sltuatlon.

In the remainder of these notes (with the exception of Sec-
tion 2 of Chapter V) I will confine my attention to criteria that
compare alternative economic programs solely on the basls of com-
parisons of the corresponding sequences c(t) of vectors of total
consumption. This means, in particular, that I will be ignhoring
explicit consideration of distribution or employment goals.

2. Efficiencx

The criterion of efficiency is about the weakest (i.e. least
selective) useful criterion that is generally proposed for the
evaluation of economic programs. A program 1is efficient if con-
sumption of any commodity in any period cannot be increased with-
out decreasing the consumption of some other commodity in that
period, or decreasing the consumption of some commodity 1in some
other perilod.

Formally, 1f ¢ and d are two vectors, write
d, if ¢

d, for all 1;

o
ny
ny

i

(2.1) c d but c ¥ 4;

v

d, 1if

hy

v

c »>d, 1if cy di for all 1.

A feasible program with a sequence of consumption vectors
c(1),...,c(T), is efficient is there 1s no other feasible program
with consumption vectors, say, c(1l),...,¢'(T) such that

c'(t)

ny

c(t) for all t, and
(2-2)
c'(t) > c(t) for some t.
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Typically, the class of efficlent programs will be very
large, and some further criterla will be needed to arrive at a
cholce among the efficient programs.

Since efficlency 18 a generally agreed-upon criterion, 1t is
not surprising that economic theorists have devoted a good deal
of attention to the problem of characterizing efficient programs.
Some of these results wlll be reviewed in Chapters III and IV.

3. Soclal Welfare Functions and Social Time Preference

In this section I describe some speclal formulations of pref-
erence among alternative time patterns of consumption, in terms of
numerical functions of the sequence of consumption vectors c(1l),
«e.y ¢(T). I will call a socilal welfare function any numerical
function U defined on the set of possible sequences c(1), ...,
¢(T) such that

Ule(1), -+« c(T)] > Ule'(1), ..., c'(T)]

expresses the fact that the sequence c¢(l), ..., ¢(T) is preferred
(e.g. by the planner) to the sequence ¢'(1), ..., c'(T).

One Period Welfare. The flirst special assumption that sug-
gests 1tself 1s that the soclal welfare that is derived from a
sequence of consumptlon vectors can be expressed as a function of
one-perliod welfares. 1In other words, suppose that in each perilod
t one can define the welfare (or "income") that i1s attributable
to the consumption c(t) in that period only, say

(3"1) Vt = U.t[C(t)] ’

and suppose that the socilal welfare function for the Bsequence
c(1), ..., ¢(T) 18 defined in terms of the numbers vis thus:

(3-2) Ule(1), «-vy e(T)] = V(vyy +vvy V) -
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In this case, the function Ug expresses how the quantities of dif-
ferent commodities consumed in perlod t are combined to provide a
8ingle measure of welfare in that perlod, whereas the function V
describes the preferences among alternative time-patterns of one-
period welfare-+

I first describe some speclal forms of one-period soclal
welfare functions.

(1) Linear Case. Suppose u has the form

M
(3.3) u(e) = ufey, <005 cy) = 1§1 WyCy -

This 18 the form taken by most lndex numbers. Thus the
"weights" w; may be constant prices, to give an index of "real
income".

Note that a proportional change in all the components of c¢
results in an increase of welfare in the same proportion; 1i.e.,

u(ke) = ku(e) , for any number k.

(11) Linear-Logarithmic Case. Suppose u has the form

M
(3.4) u(e) = = wy log cy -
i=1

This is, of course, defined only if Cy is positive for all 1 for
which w, +

A proportional change in all the components of ¢ adds a con-
stant amount of welfare, thus

18 non-zero.

*Note that a strictly increasing monotonic transformation of
the functions U and V does not change the order of preference
among sequences of consumption or one-perlod welfare. The same
is typically not true of monotonic transformations of the one-
period welfare function u, since the numerical values taken by
the function u enter into the function V.

++Here, and elsewhere in these notes, I use the convention that
0-log O = O.
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u(ke) = =
1
f wi(log k + log ci)
= (E wi)log k + ? w,; log ¢y
= (2 @;)log k + u(e) .

i

The linear-logaritimlc welfare function exhibits decreasing
marginal welfare, silnce

u(e) | 21
aci ci

Q-

The linear-logarithmic function is the logarithm of a weighted
geometric mean of the consumptlons of the individual commodlties,
in the case wy 20and = w, = 1, since

1=1 1

M [4V)
eu(c) - H cii .
i=1

(111) Desired Proportions. Suppose that one wishes to maxi-
mize consumptlon, but in certain desired proportions, so that con-
sumption of any indlvidual commodity 1n excess of the desired pro-
portions 18 not valued. Let Wy wevs Wy be the deslred proportions
of the M commodities. 1If wy > O for every 1, then this one-perlod
welfare function can be expressed as

(3.5)  u(c) = min () .
i 1

More generally, denoting by w the vector with coordinates Wy
if w > 0, then

(3.6) u(c) = min (k|je 2 ko } .
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The figure shows typical "iso-welfare" contours for the case of
two commoditiles.

>C1

The dotted line 1n the figure indicates the set of consumption
pairs (cl,ca) that are in the desired proportions.

This type of criterion function 18 often used 1n the Soviet
Union (see WARD).

Intertemporal Preference. Once having chosen a measure of
one-period welfare, 1t remains to choose a way of expressing
preference among alternative sequences £ of one-period welfare
values. In other words, 1t remains to choose a particular form
for the function V of equation (3.2), which might be called the
soclal intertemporal preference function.

The simplest function that suggests itself 1s a sum of one-
period welfares:

V(vl’ va’ nc-) = % vt .
More generally, one might consider a linear functilon of one-period
welfares:

(3'7) V(vli V2’ "‘) = f dtvt .

A special case of (3.7) that 18 of some appeal i1s produced by
taking

(3"8) dt =4 ,



II-8

where d 18 a given positive number; in this case (3.7) becomes

t
(3.9) V(Vys Vs +00) = % a*v,
The number d 18 called the social time discount factor, or time

preference factor. If d < 1, this expresses a preference for

present as against future consumption; inversely, d > 1 expresses
a preference for future as agalnst present consumption.

If the number of periods is infinite, the sums (3.7) and
(3.8) may not converge. In particular, if the sequence V. grows
at least as fast as the sequence (l/dt), then the sum (3.7) will
be infinite.

Other criterla focus on the long-run, or assztotic, behavior
of the sequence Vi For example, one can take

(3«10) V(le V2, -‘-) = %im@ Vt 1

1f this 1limilt exlists. This is essentlally the criterion applled
when one looks for best statlonary states.

In the typlcal economic growth problem, the sequence Ve
grows without 1limit (even 1if Vi represents per-capita income),
and the formulation (3.10) is not useful. In such a case one may
conslder the rate of growth. The rate of growth re of the Bequence

vy at period t 18 defined as
v
t
(3.11) ( >-1.
t Vi1

(I am assuming that all of the v, are positive.) 1If

(3.12) r=14m r

t—o>w t

exists, 1t 1s called the asymptotic or long-run rate of growth.+

+Note. If time 18 continuous, and A 18 a differentiable function
of time, then the instantaneous growth rate of \ at time t 1is

dv bt

defined by —%/v, . Thus the growth rate of v, = ae’" 1s b.
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In exponential growth

vt = abt )

the growth rate is constant and equal to (b-1).
The asymptotlc rate of growth of a sequence may be zero,
even though the sequence grows without 1limit, e.g. for

Vt=tc

Two Sequences may have the same asymptotic growth rate (or
same 1limit) and yet one be always larger than the other. More
troublesome 1is the case 1n which two sequences have the same
asymptotlc growth rate, but the first is greater than the second
at some time periods, and smaller in others.

The last difficulty suggests a different type of criterion.
Instead of trying to assign a numerical value expressing "socilal
welfare" to every sequence, one may be satisfied with pair-wise
comparisons of sequences, for example by assigning a numerical
value to the sequence of differences.

Finally, one may combine several criterla hlerarchically,
or one may try to maximlze the value of one criterion, subject
to constraints on the value of another.
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CHAPTER I1I. DERIVED CRITERIA

1. Present Value

1.1 Introduction

Economists have long discussed the possible role of prices
in promoting efficient production and allocation in a market
economy. More recently, there has been considerable study of the
possibilities of using "imaginary prices" as alds in the calcula-
tion of good economlic programs 1ln cases in which the economic
declsions are not left to a market. 1In thils section I will re-
view some of the theorems on the connectlion between economilc
optima and such systems of imaglnary prices — usually called
shadow prices 1n the technlcal literature.

Essentially, these theorems indicate how sultably chosen
shadow prices can be used to test an economic program for opti-
mality in the sense of some of the basic criteria discussed in
the last chapter. Given a shadow price pi(t) for each commodity
in each period, one can calculate the total "shadow value" of any
sequence of consumption vectors c(t) as

S p,(t) e,(t) -

1,t i 1
One can also calculate the "shadow profit" for any input-output
pair [x(t),y(t)] as

2 py(t+1) y,(t) - 2 py(t) x4(t)

and add up these shadow profits for any program of production.
If one interprets the shadow prices corresponding to future
perliods as discounted prices (and it will be seen that this is
appropriate), then one can interpret a total value of the type
Just described as a present value. The three theorems I will
discuss are, roughly speaking:
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(1) An economic program is optimal if and only if the corre-
sponding sequence of consumption has maximum present value among
all feasible consumptlion sequences, provided the present value 1is
calculated using sultably chosen shadow prilces.

(2) An economic program is optimal if and only if, for suit-
ably chosen shadow prices,

(a) no other consumption sequence (feasible or not)
wlth the same, or less, present value 18 pref-
erable, and

(b) no other feasible plan of production ylelds a
higher present value of total profits.

(3) 1If production can be divided into several sectors, with
no external economles or diseconomles between sectors, then result
(2) above can be extended to apply to separate profit calculatlons
by the individual sectors.

Naturally these theorems hold only under certain assumptions about
the production posslbilities and about the criterion of optimality.

The theorems are Iinteresting for at least two reasons. First,
they may be used to form the basis of a method of calculating op-
timal programs. Second, theorem (3) suggests a way to decentral-
1ze the process of economlic calculation or decision making.

1.2 An Example

For those who are not familiar with the concept of prices as
indlicators of optimality, 1t may be useful to begln with a simple
example of calculating an optimal one-period production plan.

Suppose that two goods — labelled 1 and 2 — are to be pro-
duced, and that two other goods — call them "capital" and "labor"
— are used as inputs. Suppose further that the production func-
tion for good 1 1s

(1.1) g, = (eBi)K:1 Lil_ai) ,
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Yy 18 the output of good i,

Ki 18 the quantity of capital devoted to the production
of good 1,
Li is the quantity of labor devoted to the production of

good 1,

and Bi and a, are parameters, with a, > 0. Let K and L be the
total amounts of capiltal and labor, respectively, that are avall-
able as inputs into production, so that

A
|

(1.2) K, + K,

A

K, L

)

iy
O

P) L

iy
(@]

The set of feasible output pairs (yl,y2) is represented in
Figure 1 by the 8et of polnts bounded between the curve and the
two co-ordlnate areas. The efflclient output palrs lie on the
curve 1itself, which we may call the efflciency curve.

To 11lustrate result (1) of Section 1.1, consider the
efficient’ output pair (ﬁl,ﬁz) in Figure 2.

N ’P

A
(3,55)

Figure 1 Flgure 2

*In Chapter II the criterion of efficiency was applied to con-
sumption. It can be extended to production here in an obvious
way, or alternatively the reader may imagine here that all of
the output willl be consumed.
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Through the point (yl,ye) draw a line tangent to the effi-
clency curve (see Figure 2), and denote the equation of that lime

by
(1’3) plyl + p2y2 = d.
The parameter d 1s, of course, given by
(1.4) d = P, *+ Po¥p -
For the case shown 1n the flgure, the parameters 121 and Py will
be positlve, so that 4 1s also positive.
Call 1] and Ps the shadow prices of goods 1 and 2, respect--

fully, and for any output pair (yl,yz) (not necessarily on the
line (1.3)), call the value of

P1¥1 * Po¥p

the shadow value of the output palr. It 1is intultively clear
from Figure 2 that of all the feasible output pairs, the glven
efficient pair (§l,§2) has the largest shadow value.

Furthermore, Figure 2 makes it plausible that if one were
to_change the shadow prices and agaln search for the output pair-
that maximizes the shadow value, one would be led to another
efficlient pair. 1Indeed, by giving the shadow prices all possiblet
non-negative values, one 18 led in turn to all the efficlent out--
put pairs.

Finally, suppose that the efficiency curve had the shape
shown in Figure 3 (this could be the case for some production
functions other than (1.1)). It would still be true that an out--
put palir with maximum shadow value — for any given non-negative
shadow prices — is efficient (e.g. the point y' in Figure 3), bu$t

there would now be efficient output pairs (e.g. the point y")
that could not be obtained by maximizing shadow value — for any
non-negatlve prices.
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<
<
[

Flgure 3

Shadow prices can also be used to characterize output pairs
that are optlmal in the sense of maximizing a soclal welfare
function, provided the function has a sultable form. For example,
suppose that the welfare function has the form

(1.5) u(yys¥,) = @ log y; + w, log y, »

where W, and Wy are given positive numbers (see Chapter II, Sec-
tion 3). A typical iso-welfare curve 1s shown in Figure 4.

Yo

LS

N
~
n

Figure 4

It 18 intuiltively clear (see Figure 5) that the feasible output
palr with maximum welfare 18 the point § at which an 1so-welfare
curve 1s tangent to the efflclency curve.
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Flgure 5

The dotted line that 1is tangent to both the efficiency curve and
the iso-welfare curve at the optimal point & determines again
shadow prices such that & has maximum value among all feasible
output pairs.

The particular configuration shown in Figure 5 18 possible
because the production and welfare functions have certain special
properties. In particular, the production function (1.1) exhibits
decreasing marginal productivity of the inputs, and the welfare
function (1.5) exhibits decreasing marglnal welfare for each good.

Since the "price line" 1s tangent to the iso-welfare curve
as well as to the efficlency curve at the point §, i1t can be
shown that one can take as shadow prices any pair of numbers pro-
portional to the partlal derivatives of the welfare function,
evaluated at y. Since in the present example

du(y,,¥,) ooy
SV, ¥y

one can take

g

<>

(1.6) Py = =
i
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Thus py can be interpreted as the increase 1n welfare that would
be achieved were one to be able to increase the optimal amount of
good 1 by one unit (without decreasing the amount of the other
good).

Figure 5 also illustrates part (a) of result (2) of Section
1.1, namely, that the output pair (§1,§2) gives the largest wel-
fare of all the points on the "price 1line" (or even below the

price line). Since all the points on the price line have the
same shadow value (and, of all the points below, a smaller value),
the pair (91’92) is the best among all those that involve no
larger "expenditure" of units of shadow value.

To illustrate part (b) of the results of types (2) and (3)
(see Section 1.1) requires the explicit calculation of an optimal
output pair, which I will present uslng the linear-logarithmic
welfare function (1.5).

Taking the logarithm of the production functions (1.1), and
substituting (K-Kl) for K, and (L-Ll) for L,, one obtains

log y; = By + a; log Ky + (1-a1) log L, ,

(1.7)

1og y, = By + Gy log(K-K,) + (l—ae) log(L-Ll) .

The variables to be chosen are Kl and Ll‘ Using the welfare
function (1.5), the welfare v obtalned for any choice of K1 and
Ll is

(1.8) v =wl[B +a logK, + (l-al) log Ll]
+ wy[By + a, log (K-Kl) + (l-ae) log (L—Ll)].
(It is assumed that 0 < K, <K, 0 <L < L.) The optimum is ob-

tained by setting the partlial derivatives of v with respect to
K1 and L1 equal to zero.
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dv 919 Wply o
SKI - _KI— - 'KTKI - ’
(1.9)
v wl(l-al) we(k-az)
ST T T I T T LT T 0

This 18 easlly solved to give

(1.10)

>

_ [ wi(l-ai) .
i -wl(I-a1)'+ we(l-ae)
Let Py and 2 denote the shadow prices of goods 1 and 2
respectively, as before, and let r and 8 denote the shadow prices

of capltal and labor; then the shadow profit derived from the
production of good 1 1s

(1.11) py¥y - TK; - 8L, .

Suppose that the prices p, are given by (1.6), and the prices r
and 8 by
a0 + 0, wl(l-al) + we(l-aa)

1.12 r = 8 = .
(1.12) —==, .

I will show that, wlith shadow prices so defined,

(a) the optimal allocations (1.10) yleld zero shadow
profits, and .

(b) any allocations that are not proportional to the
optimal ones yleld negative shadow profits.

In particular, then, I will have shown that the optimal alloca-
tlions maximlze shadow profits in each production sector.
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To demonstrate (a) above, substitute the given values of the
shadow prices, (1.6) and (1.12), and the optimal values of K, and
Ly» (1.10), in the expression for profit, (1.11); this gives
(1.13) profit = @, - w;a, - a)i(l—ai) = 0.

Secondly, if (Ki’Li) is not proportional to (ki,ﬁi), and y,
denotes the resulting output, then profit 1s

(1.14) wi<§i—>- wiai<;—i>- wi(l-ai)<%—i-> .

To show that the profit (1.14) is negative, it suffices to show

y K L
(1.15) Tj-'<a1<7\—j=>+ (1-a1)<71=> .
¥y Ky Ly

But from (1.7)

Yy Ky 1/ Ly . Ky Ly
(32)- () (2) ==lg)o=a(g)
¥y 1 1 1 1

which proves (1.15). (The last inequality follows from the well-
known fact that a weighted geometric mean is smaller than the
corresponding weighted arithmetic mean.)

One may glve an interpretation to the shadow prices r and s
similar to that glven to P and Py- First rewrite the expression
(1.8) for welfare directly in terms of K;» K5 Ly and Ly:

(1.16) v = o [B; +a log K, + (l-al) log L]
+ wb[Be + ay log K, + (l-ae) log L?].

The effect on v of a small change in Kl (holding the other inputs
constant) 1s given by the partial derivative
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v ©1%
(1017) SKI = -—Kl—o
Substituting the optimal value (1.10) for K in (1.17) gives
WQy + W0
(a6 | - IO
Lk, =k
171

Similarly, one easily verifiles that

v

(1.18b) = r
| .
2 2
v v
(1.19) s-ri- . = -;rg . =8 .
Ly=L, Ly=L,

Note that in (1.18) (in contrast to (1.9)), an increase in K, 18
not compensated by a corresponding decrease in K2. Hence r can
be interpreted as the lncrease in welfare that would be achieved
"1f the total stock K of capltal were increased by one unit. A
simllar interpretatlon holds for s.

1.3 Shadow Prices, Present Value, and Optimality

Let pi(t) denote the shadow price of commodity 1 in period t.
If one makes an analogy with a market economy, then pi(t) is to
be interpreted as the present value or discounted value of one
unit of commodity 1 made availlable, or used, at the beginning of
period t. The present value of a commodity vector c¢(t) is there-
fore

M
(1:20) I py(t)ey(t)

and the present value of a sequence c(l), ..., ¢(T) is

T M
(1.21) tfl = pi(t)ci(t)
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It may be helpful to say a little about the relation between
formula (1.21) and the usual way of computing present value from
market prices and interest rates. Let pI(t) denote the market
price of commodity i that is current at the beginning of period
t, and let there be a single rate of interest r. Then the pres-
ent value of the commodity vector c(t) would be

(1.22) z—"ljfjr = pj(t)e, (t),

and the present value of the sequence c¢(1), c(2), ..., etec. would
be

(1.23) 2 ey s py(t)e, (t).

More generally, there would be a different rate of interest for
each interval of time from 1 to t (e.g. "long" and "short" term
interest rates). Let r. be the interest rate (per period) for
the time interval from the beginning of period 1 to the beginning
of period t; then the present value of sequence c(1), c(2), ...,
etc. would be (compare with (1.23))

(1.24) = 1 s p¥(t)e,(t) = = = Py(t) e, (t)
' t (1+r-t)E‘I iRt AR S (1+rt)E'I A

By comparing (1.24) with (1.21) one sees that the shadow price
pi(t) corresponds to the discounted market price

pi(t)

(1.25) ?I:;:;g:r

It 1s important to note that the numbers (1.25) do not
uniquely determine the sequence of market prices and rates of
interest. Hence 1t 18 not possible to assoclate a unique sequence
of shadow rates of interest with a given sequence of shadow prices

py(t).
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Returning now to the shadow prlces, one defines the shadow
profit assoclated with the input-output pair [x(t),y(t)] by

(1'26) i pi(t+l)yi(t) = f pi(t)xi(t)'

Notice that the output yi(t) is evaluated using the price pi(t+l),
because that output 1s made avallable only at the beginning of
period (t+1). Summing (1.26) over t, one gets the total present
value of the profit assocliated with the entire production program

[x(t),y(t)]

(1.27)  Z(2 py(e+L)yy () - 2 oy (£)xy(¢)]

If production is divided into "sectors", then there will be
an input-output pair [x(k)(t),y(k)(t)] for each sector k, with

(1.28) x(t)

b x(k)(t) ’
k
y (&) (¢)

(1.29) y(t)

One can then calculate the shadow profit in each sector by for-
mulas analogous to (1.26) and (1.27).

Before giving preclise statements of the theorems on shadow
prices and optimality, I must introduce some ideas concerning
consumptlion and productlon possibllities. First, there may be
constraints on consumption other than those imposed by limita-
tions on productivity and on the availability of natural resources.
For example, there may be some minimum consumption standards, de-
rived from elther bilological or political considerations. Or it
may be considered unacceptable for consumption to decrease at any
time. The set of consumption sequences that are considered accept-
able a priorl will be denoted by ut’ This set willl typically dif-
fer from the set of feasible consumption sequences. The set of
consumption sequences that are both acceptable and feasible will
be denoted by,(f The set‘[i then, depends upon the set Jf of
acceptable consumptlion sequences, upon the set ;T'of feasible
input-output pairs, and on the sequence of natural resources q(t).
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In the following statement of theorems on shadow prices and
optimality, I use the concepts of convexity and concavity as
applied to certain sets and functions.? Roughly speaking,

(a) If the production possibility set J 1is convex, then
(globally) production has the properties of non-
increasing returns to scale and non-increasing margi-
nal productlvity of the various factors.

(b) If the welfare function U is concave, then each com-
modity at each perliod has non-increasing marginal
welfare.

Let £ denote the set of consumption sequences {?(tj} that
correspond to the set of all feaslble programs. It can be shown
that if J 1s convex, then so 1is (.

I present the followling theorems without proof.

(1) A "best"program has a maximum present value; 1l.e.,

(1a) If for some positive shadow prices pi(t) a consumption
sequence has maximum present value in the set [j, then
1t is efficient in /1.

(1b) Assume that J 1s convex. If a consumption sequence 1is
efficlent, 1n‘(1, then for some suitably chosen non-
negative shadow prices, it has maximum present value in C.

(1c) Assume that J 1s convex, and that the welfare function
U 18 concave and continuous. If the consumptlon 8equence
maximizes U on £, then for some suitably chosen shadow
prices it maximizes present value on XL.

One aspect of theorems (la) and (1b) is 1llustrated in the
following figure.

c(2)
N
B
D ¢— i
S ,
Y I
0 - c(1)

*For an introduction to these concepts, see BERGE, Chapter VIII;
or EGGLESTON; or HADLEY (on convex sets).
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The figure represents a situation in which there is one com-
modity and two periods. The shaded reglon represents the set ZL-
Point A 18 an efficlent consumption pair for which the correspond-
ing shadow prices are positive. Point B is an efficient pair for
which the shadow price of consumption in period 1 is zero. Point
D maximizes present value on Al,if the shadow price of consumption
in period 1 1s zero, but D 18 not efficlent since polint B provides
more consumption in period 1, and the same in perlod 2.

Other aspects of (la)-(lc) are 1llustrated by Figures 2-5 of
Section 1.2, with sultable relabelling of the axes.

(2) A "best" program produces the most welfare for the given
"shadow expenditure', and the most shadow profit from

Eroduction.

Assume that :Tlis convex, that U 1s strictly+ concave and contin-
uous, and that there 18 a conceivable non-negative consumption se-
quence that is better than the best feasible consumption sequence.
A consumption sequence 3(t) is best in,Al if and only if for some
suitably chosen shadow prices

(a) ¢&(t) 18 a best consumption sequence among all those non-
negative sequences whose present value 18 no greater
than that of ¢(t);

(b) the sequence of input-output pairs [x(t),y(t)] associ-
ated with &(t) has maximum shadow profit among all fea-
8ible programs.

To the above assumptions must be added the proviso that the pres-
ent value of the sequence ¢(t) 18 not the minimum possible in the

set .

(3) Decentralization of the profit calculation.

Suppose that the production possibility set :Tlis what we shall
call a sum of sets

=

J = J, ;

b
k=1

+Roughly speaking, strictly decreasing marginal utility.
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i1.e., suppose that an input-output pair (x,y) 1s feasible if
and only 1f there 1s an input-output pair (x(k),y(k)) in ;Tk,
for each k, such that

(x,y) = i (x(k):y(k))'

This assumption expresses what 1s sometimes called the absence of
external economles or diseconomies among sectors. If thils assump-
tion 1s added to those of theorem (2) above, and 1f each set :Tk
is convex, then conclusion (b) of result (2) holds for each of

the K sectors separately.

In the case of planning for an infilnite number of time
periocds, similar results can be obtalned, but additional assump-
tions are needed (see DEBREU, 1954; MALINVAUD, 1953 and 1961la).

In some situations, not every non-negative consumptlon se-
quence may be considered acceptable from the point of view of the
planner. In other words, criterla other than the welfare func-
tion may be brought into the planning problem, 1n the form of
constraints on the set of consumption sequences from which a
choice 18 to be made. For example, there may be minimum require-
ments for certain commodities (food, housing) and maximum limits
on others (lelsure). If the set of acceptable consumption se-
quences is convex, and 1f the set Ii,above 1s redefined to be the
set of consumption sequences that are both feasible and acceptable,
then Theorems (1)-(3) above remain correct as stated, except for
the following change: in Theorem (2) one must assume that there
is an acceptable consumption sequence that 1s better than the
best feasible and acceptable consumption Sequence.
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1.4 Some Remarks on the Uses of Shadow Prices in Planning

The example glven in Section 1.3 might give the impression
that shadow prices are useless for economic planning, since it
would appear that in order to calculate the correct shadow prices
corresponding to the solution of a planning problem, 1t 18 neces-
sary to calculate the solution of the problem!

Actually, the sltuation need not be as bad as this first
impression might 1indicate. First, the problem of finding the
appropriate prices might be easier computationally than the
original problem. Thls sometimes occurs in the case in which
the problem of finding an optimal program reduces to a linear
programming problem (as in the case of linear activity analysis).
Here, the prices are the so-called dual variables, and the dual
problem may be easier than the primal problem.

Secondly, computational schemes have been proposed in which
one successively adJusts the economic program, then the shadow
prices, then the program again, etc., wlth convergence towards
the optimal program and the correct prices [see ARROW and HURWICZ
(1957)(1960)]. 1In particular, in the case of several production
sectors, an 1terative process that takes advantage of the "decom-
position" of the production set can achieve considerable reduc-
tion in computatlon, or suggest ways of decentralizing the com-
putation [see DANTZIG and WOLFE (1960), MALINVAUD (1961b), and
again ARROW and HURWICZ (1960)]. Thirdly, application of the
shadow price theorems may yield theoretical insights into the
structure of optimal programs.

I will not have the time to discuss points one and two on
computation, although they are important and interesting; I do
intend to return to polnt three later 1n these lectures.

Finally, I should point out one danger in the use — or rather
misuse — of shadow prices. If one cannot solve the computational
problem of determining an optimal program, one may be tempted to
guess at proper shadow prices and proceed from there. In partic-
ular, 1t is tempting to use observed market prices for this guess.
Of course, the market prices, when used as shadow prices, need
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not lead to a feasible program; if they do, that program may be
far from optimal from the social point of view. The use of

shadow prices does not release the planner from the social respon-
8ibility of formulating fairly definite criteria of social welfare.

When market prices are used as a basls for estimating correct
shadow prices, the hardest thing to determine 18 typically the
appropriate rate of interest (or rates of interest). Thus there
is typically much controversy on what rate of interest to use in
planning public investment in roads, hydroelectrlc plants, etc.
Thie 18 a backwards way to attack the programming problem; a more
sensible way 1s to determine a feasible program with a desirable
(1f not optimal) consumption sequence, and then see whether there
18 some set of interest rates (and other shadow prices) that
rationalizes the program in the sense of the above theorems. If
not, the program can be adjusted, perhaps using some of the iter-
ative techniques described in the above-mentioned references, and
the process of testing the program can be repeated. (Some proc-
esses of this kind would seem to be a feature of current French
planning; see MASSﬁ.)

The problem is somewhat different 1f one 1is trylng to choose
not an overall program but a change in, or addition to, some al-
ready determined overall program. An example would be the choice
of the best scale or location of a hydroelectric plant in a coun-
try that already has an overall economic plan. In this case it
would be reasonable to use the shadow prices (and, in particular,
the interest rates) that had already been used in the determina-
tion of the rest of the plan, provided the plan as a whole was
considered approximately optimal. I shall not, however, go into
this class of problems in these notes.
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2. The Rate of Return

Although the criterion of rate of return has been much dis-
cussed, and often advocated, 1ts usefulness is questionable. On
the one hand, in those cases in which the criterion of rate of
return gives correct results, the criterion of present value also
glves correct results, and 1s just as easy, if not easler, to
apply. On the other hand, the criterion can lead to incorrect
results, even under circumstances 1n which the criterion of
present value works well. Nevertheless, because of the wldespread
use of the rate of return, some discussion of it seems desirable.

This criterion is typlcally used for choosing among individ-
ual investments, private or public, rather than among entire
national programs. However, 1in principle 1t can be applied as
well to national programs, provided one already has a numerical
measure of "income" in each period.

Suppose that one 1s considering a sequence of incomes, vys
Vys --+, etc. These may be total incomes (in each period), or
they may be increments of income associated with a particular in-
vestment project under consideration. In the latter case, the
initial income (or incomes) in the sequence will typically be
negative, and the later incomes will typilcally be positive.

Before defining the rate of return in a general way, it may be
well to glve two simple examples.
Example 1. vy = -K, vy = K+ v, Ve = 0O fort 2 3.

In this example, one invests K in perlod 1, gets back K + v
in period 2, and that's the end of 1t. It 18 not unnatural here
to call the quantity (v/K) the rate of return.

Example 2. vy = -K, Ve =V for t 2 2.

In this second example one invests K in the first period, and
gets back v 1n every following period, ad infinitum. Such a
situation could arise if the investment opportunity of Example 1
were avallable in every period. Agalin, 1t 1s not unnatural to
call (v/K) the "rate of return". ’
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In Example 1, suppose that the rate of interest were r; then
the present value of the income received in period 2 would be

(2.1) K+ v

Suppose further than r = v/K; then the present value (2.1) would
exactly equal K. In other words, the quantity (v/K) 1s exactly
that interest rate that makes the present value of future lncome
equal to the initlal cost.

In Example 2, for a glven rate of interest r, the present
value of future income (t > 2) is

o 00 t
2.2 s v = () 3 ()
(2.2) 2 ——rl-(l+r) - () 2o (w7
= Il’r> : T— = v/
1-1v%7

Hence 1f r = (v/K), then again the present value of future income
equals the inltial cost.

More generally, for any sequence of incomes Vs Vos <+ ete.,
the rate of return is defined as that rate of interest that would
make the present value of the income sequence equal zero. Formally,
glven the sequence v(t), define the present value

oo

Vv
- t .
(2.3) ¢(r) = tfl (—1+r—)€:I

The rate of return T is defined as the real-valued solution of
(2.4) ¢(r) = 0.

It should be pointed out that, in general, (2.4) may have no
solution, or may have several solutlons, so that the rate of re-
turn i8 not really defined for the entire class of all possible
income sequences. As a further restriction, a value for the rate
of return is usually not consldered sensible unless it is > -1.
This i1s because one usually thinks of the discount factor (1/1+r)
as being > 0. 1In particular, if all of the v, are non-negative,
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and some positive, including Vs then the discount factor would
have to be negative, if anything! (E.g., if v, =V, =1, and
=0 fort >3, then T = 2.)

It 18 often thought that the higher the rate of return, the
better 18 the income sequence. However, 1t is easy to construct
examples in which there 18 no monotonlc relation between rate of
return and present value calculated at a given shadow interest
rate (see MASSE, pp. 23-24). 1In view of the intimate relation
between optimality and maximum present value (see Section 1 of
this chapter), this shows that maximizing the rate of return can
not be guaranteed to lead to optimal programs. A sulitable example
can be constructed along the lines of the example at the end of
Sectlon 3 of thls chapter.

There are, however, three somewhat interesting results con-
necting the rate of return and optimality. Let T be a gilven
rate of interest, and call a program maximal 1f it ylelds an in-
come sequence that has maximum present value among the alternative
programs. I shall call the income sequence for the maximal pro-

Vi

gram maximal, too. The three results are as follows:

(1) For "small" departures from a maximal program, the rate
of return on the marginal income sequence (the sequence of incre-
ments) equals the given interest rate r.-

(2) 1f r, > 0, and all incomes are non-negative after the
first period, then for sequences whose rates of return are suffi-
clently closgse to Tys those sequences with the higher rate of re-
turn will also have larger present value. In particular, if the
maximal sequence has a rate of return equal to Ty then r, is a
(local) maximum of the rate of return.

(3) If the set of alternative income sequences (1.e., the
sequences corresponding to alternative programs) exhibits constant
returns to scale, then a maximal program also has a maximum rate
of return.

To prove the above propositions, suppose that the set of
alternative income sequences (or programs) is indexed by a param-
eter 6. Modifying slightly the notation of (2.3), let ¢(r,0) de-
note the present value of a Sequence {yt(e)}, if the rate of
interest 18 r, thus
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oo
¢(I",9) = =
t=

1
Also, let ¢r and ¢9 denote the partial derivatives of ¢ with
respect to r and 61 respectively.

Let r_ be a fixed interest rate, and let 8 be a maximal
program; then

(2.6) ¢9(ro,9) =0,
or, from (2.5),
v (6)
Ve
St 2

(assuming all the necessary properties of differentliability and
convergence). Hence Ty is a rate of return for the sequence
{.t(GQ}, which proves result (1).

For any 6, suppose that T(6) is the corresponding rate of
return; the function r(6) is defined implicitly by

(2.8) o[¥(0),0] =

Differentiating (2.8) with respect to 6 gives
(2.9)  ¢.[F(6),8]F'(6) + ¢4[F(6),6]) = O .
Solving for r'(6):

$o[T(6),6]

(2.10) ~
¢.[r(6),6]

r'(6) = -

Under the assumptions of result (2), ¢, 1s negative; hence rr(0)
and ¢,[T(6),0] have the same sign. 1r 6 # 8, ana 1r F(6) 18 suf-
ficiently close to ?o, then ¢,[%(0),6] and ¢glr ,6] have the same
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sign, and hence 8o do r'(9) and ¢glr, ,6], which proves the first
part of result (2). Furthermore, F(g) = r_, one has

65[¥(8),81 = 0 ,

A, A ~ . A
so that, by (2.10), r'(8) = 0, and r(6) has a local maximum at 6,
which proves the second part of result (2).

If there are constant returns to scale, 1.e., if the avail-
abllity of the sequence-{yé} implies the avallabllity of the se-
quence {kvg} for all k 2 0, then any maximal program must have
present value zero (if a maximum exists at all). But in that
case the rate of return for the maximal program is equal to the
interest rate, so that result (2) applies.

3. The Benefit-Cost Ratio

Another criterion that 1s widely discussed, but unreliable,
is the so-called benefit-cost ratio. For any given sequence of

incomes Vi let B denote the present value of the positive ilncomes
in the sequence, and (-K) the present value of the negative in-
comes; B 18 called the present value of benefits, and K the pres-
ent value of costs. The benefit-cost ratio is

(3.1) R = B/K .

In terms of the present notation, the (net) present value of the
sequence {v&} 18 of course

(3.2) P=B-K.

Figure 6 shows the lines of constant benefit-cost ratio in the
(K,B) plane, and Figure 7 shows lines of constant present value.
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-

Figure 6 Figure 7

>
—to

N

The proposition that meximizing the benefit-cost ratlo typlcally
does not lead to maximizing present value 18, of course, equiva-
lent to the proposition that minimizing average cost typically
does not lead to maximum profit, and therefore probably needs no
explanation here. Figure 8 will help the reader to recall the
essential difficulty. In the flgure, the shaded area represents
the feaslble cost-beneflt pairs. Polnt M 1s the feaslible point
with maximum benefit-cost ratlio, whereas point N has maximum pres-
ent value. As one moves8 along the boundary of the feasible set
from point L to point M, both R and P are increasing. Between M
and N, R 1s falling, but P 18 rising. Beyond N, both R and P are
falling.

By constructing figures similar to Figure 8, for Examples 1
and 2 of Section 2 of this chapter, one can easlly see how maxi-
mizing the rate of return can lead to results that differ from
maximizing present value.

B
t =max P=max

A 4
=~

Figure 8



K.

E.

E.

E.

III-24
REFERENCES FOR CHAPTER III

J. ARROW and L. HURWICZ, "Decentralization and computation in
resource allocation,"” Essays in Economics and Econometrics,
Chapel Hill, N.C.: University of N.C. Press, 1960, 34-10%.

BERGE, Espaces Topologiques, Parilis: Dunod, 1959.

B. DANTZIG and P. WOLFE, "The decomposition principle for
linear programs,'" Operations Research, 8 (1960), 101-111.

DEBREU, Theory of Value, New York: Wiley, 1959. (Cowles
Foundation Monograph 17)

DEBREU, "Valuation equilibrium and Pareto optimum," Proceedings

of the National Academy of Sciences of the U.S.A., 40 (1954),
588-592.

G. EGQLESTON, Convexity, Cambridge: The Cambridge University
PPeBs, 1958-

HADLEY, Linear Algebra, Reading, Mass.: Addison-Wesley, 1961.

C. KOOPMANS, Three Essays on the State of Economic Sclence,
Chapter I, New York: McGraw-Hill, 1957.

MALINVAUD, "Capital accumulation and efficient allocation of
resources," Econometrica, 21 (1953), 233-268.

MALINVAUD, "Efficient capital accumulation: a corrigendum,"
Working Paper No. 28, Management Science Research Center,
University of California, Berkeley, June, 1961.

MALINVAUD, "L'intérét comme indicateur de choix dans l'alloca-
tion des ressources," Association Internationale de Science
Economique, Colloque sur la Théorie de 1'Intérét, Royaumont,
Mars, 1962 (mimeographed).

MALINVAUD, "On decentralization in national planning," Working
Paper No. 36, Management Science Research Center, University
of California, Berkeley, August, 1961.

MALINVAUD, "The analogy between atemporal and intertemporal
theories of resource allocation," Review of Economic Studies,
28 (1961).

MASSf, Le Choix des Investlissements, Paris: Dunod, 1959.




CHAPTER IV
CALCULATION OF OPTIMAL PROGRAMS: AN EXAMPLE

1. Introduction °

In this chapter I will bring together various elements intro-
duced in the first three chapters, in the context of an extended
example. For this example I will derive explicit formulas for
the optimal programs, both for finlte and infinite horizons, and
show how certain aspects of these programs — e.g. the saving and
consumption coefficients and the rates of growth — depend upon
the varlous parameters of the production and soclal welfare func-
tions. I will also investlgate the corresponding shadow prices.

For this example, I willl assume:

(1) There are two types of commodities, produced and non-
produced (primary resources). The production and aging of the
produced commodities follows the linear-logarithmic model of
Chapter I, Section 3. The primary resources are made avallable

exogenously, 1l.e. in a sequence of quantities that does not de-
pend upon which program 1s adopted.

(2) Social welfare is a sum of discounted one-period wel-
fares, and the one-perlod welfare function is linear-logarithmic,
as in Chapter II, Section 3, Example (1i).

An important division of cases arises according to whether
or not primary resources (in the above sense) actually do enter
into the economy. In the special case of the absence of primary
resources, the optimal programs approach, 1in the long run, propor-
tional growth paths, l1.e. paths in which the consumption, produc-
tion, and stocks of all commodities grow exponentially at the
same rate. This common growth factor 1s a product of two factors.
The first factor 18 a weighted geometrlic mean of the savings fac-
tors for the various commodities. The second factor is the growth
factor for productlon that would be achieved if there were no con-
sumption, but goods and servlices were allocated to production in
the same proportions as in the optimal program. This latter hypo-
thetical growth factor 1s in turn typically less than the maximum
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that is technologically possible, because the "direction" of
growth in the optimal program is pulled away from the direction
of technologically maximum growth by the tastes for current con-
sumption. 1In the limiting case of a social time discount factor
of unity (no discounting of future welfare), consumption is zero,
and production grows at the maximum rate that is technologically
feasible.

If primary resources are present (and necessary for produc-
tion), then the long-run behavior of output 18 determined by the
long-run pattern of the sequence of primary resources. In partic-
ular, if a constant quantity of each primary resource 18 avallable
each perlod, then output and consumption approach constants in the
long run; whereas, if the supplies of all primary resources grow
at the same rate, then asymptotically output and consumption also
grow at that rate. Even 1f the soclal time discount factor 1s
unity, consumption will typically be positive; indeed, the opti-
mal program in this case is the program that ylelds the highest
long-run level of welfare.

(In interpreting these results, it should be borne in mind
that "consumption" here consists of all quantities used up that
do not enter the productive process.)

Shadow prices can be calculated for the optimal programs in
all of these cases; furthermore, in the case of long-run propor-
tional growth, there will be a natural way of defining the asymp-
totic shadow interest rate. 1In all cases, the rate of interest
exceeds, or equals, the rate of growth, according as the socilal
time discount factor 1s less than, or equal to, unity.

I use the method of dynamic programming to derive these re-
sults. The essentlal idea of this method is to determine the
maximum welfare achievable at any time as a function of the cur-
rent stocks of commodities and of the number of periods remaining
in the program.

In order to make the exposition easier to follow, and to
bring out more clearly the various aspects of the problem, I give
first an example with a single commodity, followed by an example
with two commodities, one produced and the other a primary resource.
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The general multicommodity case is then discussed, with a division
into the two cases of absence and presence of primary resources.

2. The Case of One Commodity

Suppose there is only one commodity, whose production obeys
the relation

B

e X, or

it

y
(2.1)

log y B + log x,

where x is the input, y is the output, and B is a given parameter.
If consumption in period t 1s denoted by c(t), then the social
welfare for the (T+1) periods O, ..., T is assumed to be'

t log c(t),

T
(2.2) v= % b
t=0
where 6 18 a positive parameter, the social time discount factor.
In each period t, one must decide how to divide the beginning-
of-period stock z(t) into consumption c¢(t) and input x(t). Thus
one has

c(t) + x(t) = z(t) , t =0, ..., T ;
(2.3) c(t) 20, x(t) 20,
z(t+1) = ePx(t) , t =0, ..., T-1.

The problem 18 to maximize welfare v, as given by (2.2) subject
to (2.3), and given z(0) and T.

*For convenlence, I start counting time at t = O here, instead of
t=1o
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The Dynamlc Programming Valuation Function

The problem wlll be solved by determining, recursively, a
function GT(z) that gives the maximum possible welfare for a given
initial stock z(0) = z in a program (T+1) periods long."

Conslder first the case T = 0. The best program is clearly
the one in which all of the initial stock is consumed. Hence

(2.4) | Go(z) = log z .

Now consider the case T = 1. If ¢(0) 1s consumed in period
0, the initial stock in period 1 will be, by (2.3),

z(1) = €P[2(0) - c(0)] , or

(2.5) log z(1)

B + logl[z(0) - c(0)]

But since period 1 is the last perlod, all of z(1l) will be con-
sumed, so that total welfare will be

(2.6) v = log ¢(0) + 5 log z(1) = log c(0) + &6(B + log[z(0)-c(0)]).

To maximize v, set the derivative of v with respect to c(0) equal
to zero

1 5
c(0) ~ Z(0) - <(0) - 9

which ylelds

(2.7)  c(0) = (y3g)z(0) ,
x(0) = (yig)z(0) -

*For the one-commodity case, a direct rather than recursive
attack on the problem is probably simpler, but the alm here is
to introduce the recursive method in a simple context.
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The maximum value of welfare 18 therefore (substituting (2.7) in
(2.6)

(2.8)  G,(2(0)] = log (y3¢)z(0) + 68 + log (v2¢)2(0)] ,
or, after some rearrangement,

(2.9) G,[2(0)] = (1+8) log z(0) + log (yig)+ 5 log (1) + 58

Note that from (2.6) one could have written

(2.10)  G,[2(0)] = m?g)[log c(0) + 8G,(eP[2(0) - ¢(0)1)].
(6]

Similarly, at the beginning of period 1 in a program with horizon
T (1.e. a program with (T+1) periods) one faces a remaining pro-

gram of T periods, but with an 1nitial stock of z(l), instead of

z(0). Hence G 1s related to Gn_; by

(2:11)  apl=(0)] = mex [10g c(0) + 66,_,(eP[2(0) - ¢(0)1)].
c

I will shortly show that GT is given by

(2.12)  Gg(z) = <t§o 5t> log z + Ky »

where KT 18 a quantity that depends upon T, but not upon 2. The
formula for KT 18 given below, but is not important for the time
beling.

The significance of the particular form (2.12) of Gp 18 re-
called by going back to the recursive relation (2.11). In order
to determine what to do 1n the first period of a program with
horizon T, we must maximize

log c(0) + SGT_I[z(l)]-

From (2.12), this is equal to
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(©) + of 'z 5% |10 2(1)
log ¢(0) + ] £ &7 |log 2(1) +
2o Kp-1

-,

T
— + t + .
= log ¢(0) (tfl 8”) log z(1) + B8Kyp_y

To maximize thils last quantity, 1t 1s sufficient to maximize

log c(0) + ( Gt) log z(1) ,

ct
WM
[

since Ky_, 18 independent of c(0) and z(1). A comparison of this
last quantity with (2.6) shows that this maximization problem 1is
formally the same as that for the case T = 1, except that & has

T
been replaced by ( = Gt).
t=1

What 1s more, the problem of determining what to do in
period t of a program with horizon T 1s equivalent to a problem
of determining the first step of a program with horizon (T-t),
and according to the remarks Just made, this latter problem has
the same form as a problem with horizon 1. Hence the problem of
determining any single step of a program with arbitrary (finite)
horizon can be transformed into an "equivalent" problem of deter-
mining the first step of a program with horizon 1.

I now prove (2.12), and the proof will show, incidentally,
that KT is determined recursively by

(2.13) Ky =(§ 5'°> 103(%‘.‘ 5'°> -(% 5“) 1og<§ 5")

T ¢
+ BXZB” + 0 KT N
1 -1
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The proof is by induction. It has already been shown that (2.12)
and (2.13) hold for T = 0. Suppose now that it holds for all
horizons up to and including (T-1). Then from (2.11) one has

(2.14) GT[z(O)] = max
[¢]

,:log c(0) + & z 5 >(B+1og (2(0)-c(0)])
(0)

o]
Performing the indicated maximization, one gets
T-1
5 = &Y
1 0 o
e(07 ~ Z[0) -<(07) ’
or
-
2(0) =( gt )2(0)
s 6"
(2.15) ©
) e
x(0) = 2(0) - o(0) (T—>z(o)
. O

Substituting (2.15) in (2.14), one easily verifies the desired
results.

Consumption and Saving Coefflclients

According to the principle already used in relating GT to
Gp_q (see (2.11)), one obtains immediately from (2.15) the opti-
mal consumption and saving in period t for a program with horizon
T, since one starts period t with a stock z(t), and there are
(T-t) periods remaining ir the program after the current period t.
Thus,
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o(t) =(T§—15-;)z(t) ,

(2.16) k=0

x(t) = iy if///&it Sk:>z(t) .
k=1 -0

Notice that the ratios of c¢(t) and x(t) to z(t) depend upon t and
T, but not on z(t).

Infinite Programs

For the rest of thls section, the discussion will be limited
to the case of an infinite horizon. Letting T -»= in [(2.16), for
fixed t, one obtalns for the case 5 < 1

c(t) = (1-8)z(t)

(2.17)

x(t) = 6z(t) .
Thus one has a constant saving factor, equal to the social time
discount factor in all periods.

Since the sum in (2.12) does not converge for 5 = 1, we can
not strictly speak of the optimal infinite program for this case.
Nevertheless, we Bee that as 6 » 1, for fixed t, consumption
approaches O and "saving" (input) approaches z(t).

Returning to the case 6 < 1, one easlily computes the evolu-
tion of output z(t) in time as

z(t) - oePz(t-1) .
The solution of this difference equation 1s
(2.18)  z(t) = (6e)* z(0) .

Hence output, and therefore consumption, grows exponentlally,
with growth factor eP (the growth rate is GeB-l). The maximum
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growth rate for output 1is achieved if 6 = 1, but in this case
there 1s no consumption! If &' < 8" < 1, and B'eB > 1, then the
optimal program corresponding to &' will start with higher con-
sumption than the optimal program corresponding to 5", but even-
tually consumption in the second program wlll surpass that of the
first, since 1t 1s growing exponentially at a larger rate.

The Interest Rate for an Infinite Program

There 1is only one commodity, so that the only shadow prices
assoclated with an optimal program correspond to rates of interest.
Indeed, since growth occurs at a constant rate, the shadow rate
of interest must be constant. I willl show that 1t equals (eB—l)
for all optimal plans; thls corresponds to a shadow discount fac-

3 In particular, the shadow rate of 1lnterest exceeds

tor of e ~.
the rate of growth 1f 6 < 1.

To show that the rate of interest 1s (eB-l), 1t suffices to
show that, using this rate (and this rate only), shadow profit is
maximum for the production plan of the optimal program.

For a rate of interest r, the present value of profit for
period t is

y(t)  _x(t) ,
(1+7)"* L (14r)°

or, using the production relation (2.1),

(2.19) -2251%11 - x(tit - —x(t) r (eP-1-r) .

(1+r) + (1+r

Three cases arise:

(1) 1If eP-1-r > 0, then profit could be made arbitrarily
large by making x(t) sufficiently large.
(11) 1r eP-1-r < 0, then maximum profit (zero) 1s achieved
by making x(t) = 0, i.e. by not producing.
(111) 1Ir ePo1-r = O, then profit is zero for all production
plans.
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Hence the only interest rate for which an optimal plan gives
maximum profit is r = eP-1 (case (111)).

It 18 of some interest to note what happens when a linear
welfare functlon 18 used instead of a logarithmic-linear one.
Suppose that in place of (2.2) one has the welfare function

(2.20) v= 35

t=0
It 18 easy to show that two cases arlse 1n classifying the optil-
mal programs:

(1) 1f 5eP < 1, then all of the initial stock z(0) 18 con-
sumed 1n period 0, and consumptlon 1s zero for the rest
of the program.

(11) 1Ir BeB > 1, then consumptlon 18 zero until the final
period T, at which time the stock z(T) = e Pz(0) 1is
consumed.

In the boundary case 6eB = 1, all programs are equally good
(provided nothing 1s thrown away).

Even thils simple example 1ndicates how the use of a purely
linear welfare function can posslbly lead to extreme - and absurd -
results.

Exercise 1.

Verify part (a) of result (2), Section 1.1, Chapter III, for
optimal infinite programs. [Hint: take the shadow "budget" to be
equal to z(0), the value of the initial stock, and treat the con-
strained maximum problem in the usual way, ignoring the fact that
there are an infinite number of "unknowns" c(t).]

Exercise 2.

Find the shadow interest rates for optimum programs with
finite horizon T.
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3. The Case of Two Commodities, Produced and Primary

Suppose that there are only two commodities, of which the
first 1s produced from inputs of both, according to a linear-
logarithmic production function, and the second is a primary
resource (see Section 1). More precisely, if in any period the
inputs of the two commodities are Xq and Xp) respectively, then
the output of good 1 is

(3.1) ¥ = €% x5, or

log ¥ B + ay log X] + 0y log Xy s

where B, a,, a, are glven parameters, and a, and a, are positive.
I shall also have occaslon to use the assumption of constant
returns to scale,

(3.2) a, +a, = L.

As far as commodity 2 goes, a quantity q(t) 1s exogenously made
avallable at the beginning of each period ¢t.
Suppose further that the soclal welfare function is given by
T ¢
(3.3) v = tf‘ 6" [w; log cl(t) + w, log c2(t)],

-

where b5, Wy s and w, are positive parameters, with
(3-)"’) (1)1 + (D2 = l’

and ci(t) is, as usual, the consumption of commodity 1 1n period t.

The programming problem is to choose the consumptions ci(t)
and the inputs xi(t) to maximize the welfare (3.3) subject to (3.1)
and
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(3-5) cy(t) + x,(t) 5 2z, (¢) 1=1, 2,
ey (t), x,(t) z 0 £=0, ..., T,
Zl(t+1) = Yl(t) t=1, ..., T,
22<t)=Q(t) t=1, ..., T,

where zl(O), z2(0), and q(1), ..., q(T) are given.

Notice that since only one good is produced, there is still
no problem of allocatlion of inputs among alternative uses, but
only the problem of allocating the stocks zi(t) between consump-
tilon and production.

The Dynamic Programming Valuation Function

Again, I use the dynamic programming technique, determining
recursively a function GT that gives the maximum possible welfare

z,(0)
for a given horizon T, a given initlal stock z(0)==<zl(o)>, and a
2

given sequence of primary resources q(l), ..., q(T).
For T = 0, all 1nitlal stocks are consumed, so that

(3.6) Go[z(o)] = o log zl(O) + w, log 22(0).
Now consider T = 1. The welfare is
(3.7) v = o log cl(O) + w, log 02(0)
+ 6(w;[Ba; log x,(0) a, log x,(0)]w, log q(1)],

since all the stock in the final period (t = 1) will be consumed.
The partlal derivatives of v with respect to the various unknowns
are

(3 8) oV = wi QV = bwlai
. 3¢,(07 ~ (07 7 3%,(0) - x.(0) ’

Because of the constraints (3.5) on available stock, one must have

o
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SV Jdv _
(3.9) ;c—iaﬂ--m; i=1, 2,
or, from (3.8),

w bw,a
(3.10) 1 i 1=1, 2

¢, (0] = x; (0] ’

The solution of (3.10) is

1 ooy
c,(0) = (ITEEI)ZI(O) > x4(0) = (IzgaI)Zl(o) ’
3.11
( ) Wy dw,a,
c,(0) = (55:55155)22(0): x,5(0) = (Z%:BZEEE)ZQ(O)

Substitution of (3.11) in expression (3.7) for welfare gives
(3.12) 6,[2(0),a(1)] = (1 + Ba;)w; log 2,(0)
+ (bajwy + w,) log 2,(0) + K [la(1)],

where K1 does not depend upon z(0O). Equation (3.12) can be re-
written:

(3.13)  6,[2(0),a(1)] = ©,(1) log 2,(0) + wy(1) log z,(0)

+ Kl[Q(l)]:
where

(3-13)  @y(1) = (1+ 5ay);

w2(1) Baywy +

Note that G, is similar to G,, except that the "weights" w, are
replaced by new welghts wi(l), and a term independent of z(0)

has been added. Note, too, that the new weights are linear func-
tions of the o0ld ones. These are the key features that will en-
able us to go easily from a problem with horizon (T-1) to a prob-
lem with horizon T.
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In general, one has the following relation between GT and

GT-l:

(3.15)  aplz(0),a(1),...,a(T)] = max{wl log ¢,(0)
+ w, log 02(0)

+ BGT_l[z(l),q(2):---,Q(T)]}

where the maximum i8 subject to (3.5).
Using an argument by 1nduction similar to that used to ob-
tain Gl’ one can show wilithout much trouble that

(3.16)  Gplz(0),a(1),---,a(T)] = @(T) log z,(0)
+ wQ(T) log 22(0)
+ Kpla(1),...,a(T)1,

where

u

wl(T) W + Balwl(T-l),

(3.17) wE(T) = wy + bagwl(T-l),

1, 2.

Equations (3.17) can be solved to give

T-1 t
g (501) w9y

wl(T)

(3.18)
T-2 £

+ ba i (6a,) “w, .

w2(T) w, 5
A8 1n the case of Section 2, the formula for KT is irrelevant
for the determination of the optimal policy, but for complete-

ness I give 1t anyway.
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(3.19)  Kyla(1),--.,a(1)] -
w, log w; + w, log w, + Galwl(T-l) log balwl(T-l)

+

6a2wl(T-l)log 6a2wl(T-l) -wl(T)log wl(T)- 2(T)logm2(T)
6 [0, (T-1)pw,(T-1)a(1)] + 6Ky_;[a(2),...,a(T)],
0.

+

K

0

Consumption and Saving

In deriving (3.16)-(3.18), the optimal consumptions and in-
pute in period O willl be found to be:

W, wl(T)—wl
1(0) m Zl(O), xl(O) 'WT_ 21(0),

(3.20)

Wy wa(T)-w2
02(0) = W Z2(0), X2(O) —aTam-— 22(0).

Hence, the optimal consumptions and inputs 1in period t of & pro-
gram wlth horizon T will be

w (T-t)-
r(®) = [t s m ) - [ B,
(3.21)
w (T-t)-

Infinite Programs

If ba, < 1, then the sums in (3.18) converge as T-» =, and
wi(T) converges to, say, %1, given by

~s

1
& = (rgar)or

(3.22)

~S

®p

6a2
(Tsap)er + @2
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Hence consumptions and inputs in every period will be

Cl(t) = (1—501)21('0) = ‘lel(t)
xl(t) = balzl(t) - olzl(t)
(3.23) _ -
w2(1-6a2)

cy(t) = @by * Gy(1-6a1) 25(t) = vy2,(t)

w16a2

_533“2 + wp(1-5a,) % ()

-

x,(t)

GQZQ(t)'

Notice that the consumption and saving coefficiler.cs do not depend
on the sequence q(t) of primary resources. Notice also that the
consumption and saving coefficients Y1 and oq for commodity 1 do
not depend upon the weights W, and Wy in the welfare function.
The saving coefficlent Oy for commodity 2 1s an increasing func-
tion of the social time discount factor.

For 6 = 1,’we have

(3.24)

For & close to 1 we have the approximation
1
(3.25) Op & Wy l-(l-6)w2(1 + EE )

Consumption of both commoditles approaches zero as b -)(l/bl).
I turn now to a discussion of the time pattern of output of
commodity 1 for optimal infinite programs. Let

(3.26) & = log oy ,
so that

(3.27) log xi(t) = €, + log zi(t)
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(note that €, < 0); and let

(3‘28) C =B + 0151 + a2€2 .

I will show that, for an optimal infinite program,

t-1
(3.29) log zl(t) = ag log z(0) + ( = a%)c
0

t-1 "
+a, I aj log a(t-1-k).
k=0

(We have also, of course, zg(t) = q(t).)
The first term on the right side of (3.29) converges to O.
The second converges to

T£_=-£—'
% 9%
The third term depends upon the behavior of q(t).
Consider the special case in which q(t) grows (or declines)
at a constant rate:

(3.30)  a(t) = q(0)q®.

This includes the special case of constant q(t). It can be
shown that the third term now will be asymptotically t log q,
so that

(3.31)  z;(t) ~ ha®,

where h is some constant depending on the various parameters.+
In particular, if q(t) is constant (q = 1), then

(3-32)  Lm z)(t) = a(0) exp (g).

tow

*For two functions f£(t) and g(t) of t, £(t)~g(t) means that

£t
lim = 1-
toe 8
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Hence, for exponential growth of q(t), the optimal program
approaches asymptotically a proportional growth path in which
output of commodity 1, consumption of both commodities, and inputs
of both commodities are all growing at the same rate as q(t). In
particular, consumption will be asymptotically

(3.33)  c;(t) ~ kya,

for some constants ki' The one period welfare 1n period t will
then be approximately

(3.34)  v(t) = v(t),

where

(3.35)  (t) = w; log k; + w, log k, + t log q-
The precise meaning of (3.34) is that

(3.36)  1im [v(t) - ¥(t)] = O,

t—2ea

even though v(t) and v(t) may be increasing without 1limit.
One can show that the constant

(3.37) w, log ky + w, log k,
1s maximum when 6 = 1 (See Exerclise 1 at the end of this section).

To complete thils section I will derive formula (3.29) for the
output zl(t) of commodity 1. From (3.27), (3.1) and (3.5) we have

(3.38) log zl(t+l) =B + al[el + log zl(t)] + a2[§2 + log zz(t)].

Using (3.28) and the fact that ze(t) = gq(t), we can rewrite (3.38)
as

(3-39) log z,(t+1) = ¢ + ay log z;(t) + a, log q(t).
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It 18 not hard to verify that (3.29) 1s the solution of the
difference equation (3.39).

Exercise 1. 1In the case of constant q(t) = q, write the equa-
tions for a stationary state for glven consumption and savings
coefficlents Yy and oy - Find the values of these coefflcients
that maximize the (constant) one-period welfare

wy log ey * W, log Cs

and verify that the resulting statlionary state is the 1limlt as
t—»2 of the optimal program for & = 1.

Exercise 2. Let g = q-1 be the (constant) rate of growth of
q(t), and let r be the asymptotic shadow interest rate. Show
that

e}
l+r _ Y1 _ W) - 93
I+g = w,0 WAG,~ 1+ ] ] ’
11, 22 vl:w(—l)+w(—2-]
Yo Yo a1’ 2 7,

and hence that r > g for & <1, and r = g for & = 1.

4. Multicommodity Case: No Primary Resources

In thls section I discuss the case i1n which there are two
groups of commodities:

(a) new, which are produced according to linear-logarithmic
production functions, and

(b) second-hand, which are classified according to age as
well as other physical characteristics, and which are
used up according to given distributions of lifetime
(which may have any form).

This model of production was discussed fully 1in Chapter I,
Section 7. Since the introduction of primary resources into the
system leads to results that are qualitatively different 1n some
respects, I defer that case to the next section.
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The present case may be regarded as a multicommodity general-
ization of the one-commodity case discussed in Section 2. One
must now determine in each period, not only the optimal alloca-
tion of the stock of each commodity between consumption and input
into productlon, but one must also allocate the total input of a
commodity among the several production sectors (each of which
produces a single "new" commodity).

The results for this case were described qualitatively in
Section 1 of this chapter. Here I wlll give a more detalled and
mathematical description of the results, but without proof. The
proof comblnes the dynamic programming technique of the previous
two sections with the type of calculation used in Chapter III,
Section 1.2.

For the convenlence of the reader, let me first restate the
production model as compactly as possible (see Chapter I, Section
7, equations (7.6)-(7.9)).

Let there be M different commodities altogether, the first
N of them being the newly produced ones. Let > and yq» Tespec-
tively, be the input and output of commodity 1 (1 = 1, ..., M),
and define

X1 = log Xy Yi = log Yy o
(4.1)
Xy ¥
() ()
Xy Iy

The "production function", for all commodities, 1s
(4.2) Y=p8+n(f) + A'X

where B 1s a vector of parameters, A 1s an MxM matrix ((aij)) of
parameters, f 1s an MxN matrix ((fij))’ and n 1s a certaln vector-
valued function of f.

For 1 1 Mand 1l zxJ =N, aij 1s the non-negative elas-
ticity of production of commodity J with resrect to good 1. For
N+ 1=<JsM, aq is 1 1f J is the "same" commodity as i, but
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one perliod older; otherwilse aij = 0. We have aiJ > 0 for all
1, J. 1 assume that the production of new goods exhibits non-
increasing returns to scale. Mathematically, the important
Implications of these various remarks about the aiJ can be sum-
marized by

M
(4.3) ayy = o’kfl a

1A

Kj 1, all 1 and J.
For 1 £1 sMand 1 = J 2N, fig is the proportion of the
total input Xy of commodity 1 that is devoted to the production

of commodity j. Thus the f are production allocation variables

13
to be determlined in the program. By deflnition,
(4.) z
. f ___>. 0, Z f = l-
13 o1 1

The function 1 1s defined by

M

Z a

log
1=1

N,

A

13’

o
.
=
+
=
A
o
A

M,
(4.5)

For a soclal welfare function, I take the linear-logarithmic
form, with time discounting, of Chapter II, Section 3. Let c(t)
be as usual the consumption vector for period t, and define

(%.7) Cy(t) = log c,(t),
e (t)

(4.8) C(t)=< : )
cylt)

*The convention that O log O = 0 18 to be understood here.
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Let w be a vector of M non-negative components Wy » and let B be
the social time discount factor; then the soclal welfare function
1s assumed to be of the form

T
(4.9) = slwre(t), with 6 < 1.
£=0

An optimal program is one that maximizes the welfare (4.9),
glven the initial stock vector z(0), subject to®

Z(t+1) = p + n(f(t)] + A'X(t) , O =t =T-1
(4.10) c(t) + x(t) 5 z(t),
e(t) 20, x(t) 20, 0=t =T,

and to condition (4.4) on the fij(t)’

To describe the optimal program, let GT[z(O)] denote the
maximum welfare possible for a program with horizon T, given the
initial stock z(0). Then it can be shown that

(%.11) GT[z(O)] = o(T)'Z2(0) + Kp»
where

t
(4.12)  o(t) = = (54)%w,
and Ky, 1s a quantity that depends upon T but not upon z(0). 1In
particular, K, = 0. Note that Go[z(O)] = ©'Z(0), which is ob-
vious since for T = 0 all the initial stock will be consumed.
It can also be shown that in an optimal program with horizon
T, consumption, inputs, and input allocation are determined by

'wi(T-t)-wi
@y (T-T) z,(t),

(4.13) xi(t)

(3.14)  cy(t) w—;(”,}_,-_ﬂ]zi(t),

5

*Again, Zi(t) = log zi(t)e
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aiij(T—l-t)
(4.15) fiJ(t) = - .

S a (T-1-t)
op 1%

Notice that the optimal production proportions in (4.13)-(4.15)
do not depend upon current stocks.

Programs wlth Infinite Horlzons. If the horizon T is in-
creased without bound, equations (4.11) and (4.12) approach
limits, which characterize the optimal program for an Infilnite

horizon. Define

K

ES W s

(54)%,

(4.16) ©
& =

.

The optimal program for an infinite horizon 1s determlined by

[&; -y
(4.17) xi(t) = ——BI__ zi(t) = oizi(t),
oy
(4.18) ci(t) = i zy(t) = 7izi(t),
“ilal
(4'19) fij(t) = N = ¢1J
1 % By

Notice that the optimal proportlions Gy Yy and ¢1J are constant.
Define
€1
log Oy» ¢ = ( E > R
Em

B+ n(¢) + A'E.

(4.20) €y

(4.21) ¢
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It follows from (4.10) that, for the optimal program, Z(t) is
given in terms of Z(t-1) by

(4.22) Z(t) = ¢ + A'Z(t-1), t

ny
=

The solution of this difference equation 1is

t-1 t
(4.23) Z(t) = = (A')°¢ + (A')"Z(0).
k=0

A

The sequence Z(t) may converge or diverge as t gets large; i.e.,
the sequence of stocks zi(t) may converge to a non-zero limit,
diverge, or converge to zerv. However, if the matrix A of coef-
ficients a1J satlsfles certain further conditions, then the rela-
tive proportions of the quantities zi(t) do tend towards limits
as t increases; indeed, z(t) approaches a proportional growth
path wlth a constant rate of growth.

The mathematical conditions that I have in mind have the
following economic interpretation:

(a) There are constant returns to scale in the production

of each commodity J =1, ..., N.
(b) The economy cannot be decomposed into independent sub-

economies.
(¢) Production is acyclic in the sense that one cannot
partition the commodities into groups Bl’ ey BK such that com-

modities 1n group 32 can be produced from commodities in group Bl
only, commodities in B3 can be produced from commodities 1n B2
only, ..., etc., and commodities in Bl can be produced from com-
modities 1n BK only.
Mathematically, conditions (a)-(c) are expressed by
M

(a') Za,, = 1, all J
=1 1J

(this corresponds to (a) above).

(b') A 1s fully regular' (this corresponds to (b) and (c)).

*See GANTMACHER, Vol. 2, p. 88.
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As a consequence of conditions (a') and (b'), the limit

(4.24) & = 1im A¥

k2
exlists; furthermore, all of the columns of A are identical, say
equal to the (non-negative) vector a, and f éi = 1. The asymp-
totic growth factor of the optimal program is

al

(h.25) (1 + g) = e2'S,
g belng the asymptotic growth rate. The growth factor (1 + g)
can also be expressed as a product of two factors:

(4.26) (1 + g) =

The first factor is a geometric mean of the "saving coefficients"
o, of the several commodities (see (4.17)). The second factor 1is
the growth factor that would be realized 1f consumption were re-
duced to zero, but the same allocation coefficlents ¢i were used
(see (4.18)). Equation (4.26) corresponds to equation (2.18) of
Section 2 for the one-commodity case, with the first factor of
(4.26) corresponding to the saving coefficient & in (2.18), and
the second factor in (4.26) corresponding to eP.

As the soclal time discount factor & approaches 1, the con-
sumption coefficients vy, in (4.18) approach 0, and the saving
coefficlents oy approach 1. Purthermore, the allocation coeffi-
clents ¢1J approach the values

[0 a
(4.27) m ¢,, = < d =3
5 =1 J a

Notice that in this limiting case the consumption, saving, and
allocation coefficlients depend only upon technological parameters,
and not upon the weights Wy in the soclal welfare function.
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Further light on this point is obtained by looking at what hap-
pens to the weights &; as 6 approaches 1. Looking at (4.16), we
see that the sum defining A diverges for & = 1, so that & 1s not
defined in this case. However, it can be shown that

(4.28) 1im (1-6) 3 (54)K = 1,
5 —>1 0

and also+

(4-29) Aﬂ) = 5.)

so that, for B close to 1, & is approximately proportional to a.
Hence for & close to 1, the "dynamic programming valuation func-
tion" G, (see (4.11)) evaluates current stocks with weights &i
that are approximately proportlonal to the 51, i.e. with welghts
that are approximately independent of the original welghts Wy in
the social welfare function.

It can also be shown that as © approaches 1 the asymptotic
rate of growth in (4.25) approaches the maximum possible rate
of growth of output. This case thus provides an example of the
so-called "turnplke theorem" (see Chapter V). It should be em-
phasized that thls maximal growth factor is typically larger
than the second factor in (4.26).

Now I conslider the long-run direction of the optimal path,
i.e., the long-run relative proportions of the commodities.
Define

(%.30) e =32 (ar-k)ke, o, -ed;
0

then, in the long run, the stocks zJ(t) are in the same relative
proportions as the quantities nJ. To be precise, let g be the
asymptotic growth rate of the optimal program, as given by (4.25),
and define

(4.31) log hy = a'z(o).

*Note that Av = & for any vector v such that ¥ vy = 1.
i
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It can be shown that

t

(4.32) zJ(t)~ho(l + g)'n J=1, ..., M

J}

Note that the long-run proportions HJ depend upon the vari-
ous parameters of the problem. In particular, as 6 approaches 1,
the IIJ approach the proportions along the path of proportional
growth with the highest rate of growth (agaln, see the discussion
of the "turnpike theorem" in Chapter V).

Finally, one can show that the asymptotic shadow interest
rate is greater than the asymptotic growth rate if 6 < 1, and
equals the growth rate 1f 6 = 1.

5. Multlcommodity Case with Primary Resources

In this sectlon I expand the model of the previous section
to include a third group of commodities, primary resources.
These are commodltlies that are not produced, but whose stocks

are determined exogenously 1In each perliod, this sequence of
stozks belng independent of the program chosen. Whether or not

a particular commodity should be classified as a primary resource
will typically depend upon the clrcumstances of the problem. For
example, in a very poor country the population growth (or decline)
may depend upon which economic program is chosen, whereas in a
rich country the population might well be taken to be a primary
resource, at least as a good approximation. Land should typlcally
be treated as a primary resource, unless the economic programs
considered involve possible long-run changes in the fertility of
the soll, etc.

The formulas describing the optimal programs for this case
are similar to those for the case of no primary resources. How-
ever, the evolution of the output of the produced (i.e. non-
primary) resources will depend upon the availability of primary
resources. For example, 1f the supply of primary resources 1is
constant, then in an optimal program all outputs, consumption,
etc. wlll approach constant levels 1n the long run. On the other
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hand, 1f the various primary resources are growing exponentially,
then output and consumption in the various sectors will also be
asymptotically exponential, with possibly different rates for
different sectors.

Suppose now that to the liet of M newly produced and second-
hand commodities, we add P commodities, called primary resources,
which enter into the production of the new commodities, but which
are themselves exogenously supplled. Let z(l)(t) denote the vec-
tor of stocks of the produced commodities (1 to M), and 2(2)(t)
denote the vector of stocks of primary resources (M+l to M+P), at
the beginning of period t. Let Z(l)(t) and Z(2)(t) denote the
corresponding vectors of logarithms. Using the notatlon of Sec-

tion 4, I assume
(5.1) Z(l)(t) = B+ n(rlt]) + A'X(t).

Note, however, that here the matrix A has (M+P) rows and M
columns and the matrix f(t] = ((fij[t])) of allocation coeffi-
cients has (M+P) rows and N columns. Conditions (4.3) and (4.14)
are still satisfied (with the appropriate minor modifications
due to the change in the number of commodities).

By definition, the stock of primary resources is determined

by
(5‘2) Z(2)(t) = Q(t):
where Q(t) is a given sequence.
It can be shown that the maximum welfare obtainable, given

the initial stocks z(0) and the primary resource sequence q(1l),
a(2), etc., 1s

(5.3) Gplz(0),a(1),...,a(T)] = w(l)(T)'Z(l)(O)
+ w(?)(T)'Z(Q)(O)

+ Kpla(1),...,a(T)],
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where KT is independent of z(0) (I omit the lengthy formula for
KT), and w(l)(T) and w(2)(T) are given by

w(l)(T) = o) * 6Alw(1)(T-1)’
(5.4) w(2)(T) = w(e) + 6A2w(l)(T-l),
w(i)(o) = w(i)’
and
Wy Om+ 1
oy = (1) e (P )
Wy M+ P
rAl = ((aij))1=1,...,M
3=1,...,M
(5.5) <
Ay = ((aij))1=M+l,---;M+P
L j=1,...,M.

Equations (5.4) can be solved to give

T

w(l)(T) = kEO(GAl)kw(l),
(5.6) 1
o(2)(T) = @z) + B4y kfo(BAl)kw(l)'

If we define the vector w(t) by

[@(1) ()
(5:7)  alt) - :
Lo(2)(*)

then the optimal program is given by equations (4.13)-(4.15) of
Section 4, using, however, the formulas (5.6) and (5.7) for the
vector w(t) (instead of the formula (4.12) of Section 4).
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Programs with Infinite Horizons. 1If the horizon T increases
without bound, the sums in (5.6) will converge for all values of
& less than some value §. Typlcally, if there are non-increasing

returns to scale, then § will be greater than unity. Of course,
if A2 = O, then primary resources do not enter into the produc-
tion of the produced commodities, and one is essentially back in
the special case of Section 4.
Letting o denote the limit of w(T) as T gets large, one has
from (5.6)
Biay = 2 (04"

(6A
k=0 !

®(1)’
(5.8)
~ o k
B(p) = ®(p) * BhAy kfo(ﬁAl) w1y
With & as given by (5.8), one can now use equations (4.17)-
(4.19) to describe the optimal program for the case of an infi-
nite horlzon. Note that again the proportion of stocks that go
to production and consumption are constant in time (but typically
different for different commodities).
Defining £ as in (4.20) and (4.21), the evolution of the
beginning-of-period stocks of commodities 1 through M 18 deter-
mined by

(5.9) Z(l)(t) =0+ A Z(l)(t-l) + A} Q(t-1).

The solution of this difference equation 1s

t-1 Lk Nt t-1
(5’10) Z(l)(t) = 2 (Al) C"' (Al) Z(l)(0)+

> (AAY) 1Q(t-1-k).

)
0
These last two equations correspond to equations (4.22) and (4.23)
of Section 4; they are also the generalizations to the multicom-
modity case of equations (3.38) and (3.29) of Section 3.

Assume again that constant returns to scale prevail,+ and

*The results that follow typically hold even 1f there are some,
but not too strong, lrcreasing returns to scale. What is re-
quired is that the largest root of Al be less than unity.
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that A, is fully regular (see the discussion preceding equation
(4.24) in Section 4). Then the first term on the right side of
(5.10) will converge to a constant vector, and the second term
will converge to zero. The behavior of the third term depends
upon the behavior of the sequence Q(t).

Suppose that the supply of each primary resource grows at
a constant rate; i.e., suppose that

(5.11)  q,(t) = q,(0)a}

or
(5.12) Q(t) = Q(0) + tQ.

Then 1t can be shown that the third term of (5.10) equals

b2l g “2,. 4t . -1y,
(5-13) z Ak alo) - [A(I-A;)7°(I-A7)A;1'Q +£[A,(I-A,)77]"Q.

As t gets large, the first two terms of (5.13) approach constant
vectors. The third term is of course proportional to t. Deflne

(5.14) 5= [Ay(I-A;)7M]'0.
One may summarize the situation by saying that

(5.15) 1im (Z(l)(t) - tS) = H,

e

where H is some constant vector. Define

(5'16) hi=e ’ 81=e ’ 1 1) MR 4 M;

then (5.15) can be rewritten

(5.17)  z,(t) ~ his§ :
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In other words, 1n the long run the beginning-of-period

stock of each commodity — and therefore consumption, too — will
tend to grow exponentially. The asymptotic growth rates for
different commoditlies will typically be different. However, if
all of the primary resources grow at the same rate, then in the
long run all of the produced commodities will grow at the same
rate, too. [This last point follows from the fact that
A2(I-L\.l)'l is a non-negative matrix with all of its column sums
equal to unity.]
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CHAPTER V
PROPORTIONAL GROWTH PROGRAMS

l. Introduction

A proportional growth program 1s a feasible program in
which all beginning-of-period stocks, consumptlon, and inputs

grow exponentially at the same rate. In such a program, the
relative proportions of the stocks, consumption, and inputs
remain constant, even though the absolute magnitudes are in-
creasing. Proportional growth (sometimes called "balanced
growth") 1s a natural generalization of the stationary state.
If we are interested in growing as "fast" as possible, while
malntaining some desirable proportions among the various com-
moditles, then 1t may appear useful to concentrate on the study
of proportional growth, even though in principle the more logical
approach would be to search for optimal programs using the
"desired proportions" welfare function of Chapter II, Section 3.
Finally, theoretical research to date indicates that there may
be many circumstances8 in which efficient or optimal programs
tend towards proportional growth in the long run.

Formally, a program {z(t), e(t), x(t)} is a proportional
growth program (PGP) if, for some non-negative vectors z, c,
and x, and some number g > -1,

z(t) = (1 + g)tz
(1.1) e(t) = (1 + g)be t =0, 1, 2, etc.
x(t) = (1 + g)%%
and
C + X =2
(1.2) _
[(1+g), (1+ g)%12) 18 tnJ, t = 0, 1, etc.,

where JTJis the production possibility set.
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Equations (1.1) express the proportional growth of the program,
and conditions (1.2) its feasibility (see Chapter I, Section 3).
The number g 1s called the growth rate of the program. I will
denote a PGP determined as in (1.1)-(1.2) by the quadruple

(z, ¢y, x, 8)-

To be precise, a program described by (1.1) and (1.2)
should be called a constant rate PGP, since the relative pro-
portions of the commoditles would also remain the same if the
factor (1 + g)t
However, 1n these notes I wlll conslider only constant rate PGP
8o that the qualifying phrase "constant rate" will not be used.’

In thls chapter I summarlize three theoretlcal propositions
about PGP's. The first two of these concern the rate of interest
for "best" PGP's. The first states that for the fastest growing
PGP without (non-technological) consumption, the interest rate
equals the growth rate. The second states that for an efficlient
PGP with consumption, the interest rate exceeds the growth rate.

The third result describes a situatlon 1n which all consump-
tionless programs that are "optimal" in a certain sense tend
toward the fastest growing PGP (this 1s the so-called "turnpike
theorem").

were replaced by any other function of time.

2. Fastest Growing Proportional Growth Without Consumption

The earllest mathematical study of the relation between the
shadow interest rate and the rate of growth in "best" PGP's was
that of VON NEUMANN, who studlied the case of consumptionless pro-
grams8; that 1s, programs in which c(t) = 0. It should be empha-
sized that this does not exclude "technological consumption",
e.g. the consumption of food necessary to produce labor (see
Chapter II, Section 1).

If we follow the approach used thus far 1n these notes, we
are not prepared to choose among programe with zero consumption.
Implicit in von Neumann's treatment of the problem was the 1dea

*Indeed, as far as I am aware, the use of the terms "proportional"
or "balanced" growth always has referred to the constant rate
case.
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that of two consumptionless PGP's, the one with the higher rate
of growth of output is the better. Such & point of view might be
appropriate in a "crash program" of development in which one re-
duces consumption to the subsistence level and tries to achieve
some glven output targets as quickly as possible. Of course, the
consumptionless PGP with the highest rate of growth might have
outputs in "undesirable" proportions. The proposition that this
last problem may not arlse for a sufflciently long crash program
is the subject of Section 4.

Before stating von Neumann's result, we need some definitions.
An input vector x is called balanced if for some number g > -1
the input-output pair (x, [1 + glx) is feasible. The largest num-
ber g for which (x, [1 + g]x) 1s feasible 18 called the growth
rate assoclated with x (in principle g may be infinite). It is

obvious that a PGP must use a balanced input vector.

For input-output pairs that are not proportional, the follow-
ing concept 18 a generalization of the growth rate. If (x,y) 1s
an input-output pair, the coefficient of expansion R(x,y) 1s de-
fined by

(2.1) R(x,y) = max-{k]y > kx} .

(The reader has already met the coefficlent of expansion under
another name in the "desired proportions" welfare function of
Chapter II, Section 3.) For a balanced input vector x, with out-
put (1 + g)x, the coefficlent of expansion is of course equal to
1+ g, 1.e.

R(x, [1+ glx) =1+ g.

A consumptionless PGP 1s called fastest growing if it has
the maximum growth rate possible among all feaslble consumptlon-
less PGP's. Von Neumann was concerned not only with demonstrating
the existence of fastest growing consumptionless PGP's, but also
of characterizing them in terms of shadow prices. A vector p of
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prices together with a number r is called an equilibrium price-
interest pair'+ if

p:o,l">-1
(2.2)
p'(I¥F - x) < 0 for all (x,y) in QT:

Von Neumann showed that under certain conditions on the pro-
duction possibility set :T; one has the following proposltion:
There exist X, g, and p such that

(a)
(v)
(c)

% 1s balanced, with growth rate g
(p,g) 1s an equilibriun price-interest pair
1

+ g= max R(x,y)-

(x,y)eT
Thus (a) and (c) assert the exlistence of a fastest growing PGP,
and (b) states that for the corresponding system of shadow prices
the interest rate equals the maximum growth rate.

One set of conditions under which von Neumann's proposition
i8 valid 1is described below; this set 18 more general than the
set originally used by von Neumann himself.

The assumptlons are:

(1) Constant returns to scale. If (x,y) 1s in :T: then so
1s (kx,ky) for any non-negative number k.

(11) Additivity. If (x,y) and (%,5) are in J, then so 1s
(x + X, y+ ¥)-

(111) Continuity. If every one of a sequence (xn,yn) of
input-output pairs is in <J, and 1f

y = l%m Yn?

then (x,y) 1s in J.

*gee Section 3 of this chapter for a further discussion of the
shadow-price interpretation of an equilibrium price-interest
pair.
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(1v) Nothing from nothing. There is no feasible pair (O,y)
with y > 0.

(v) Free disposal. If (x,y) is feasible, and if X > x and
¥y <y, then (Xx,y) 1s also feasible.

(vi) Every commodity can be produced. For every 1=1,...,M
there 1s a feasible pair (x,y) for which the i-th co-
ordinate of y 1s positive.

For proofs of von Neumann's proposition under assumptions
(1)-(vi), see KARLIN, Chapter 9, and GALE.

3. Interest Rates for Efficlent Proportional Growth Programs
with Consumption

I turn now to the conslderation of proportional growth pro-
grams with consumptlon, and in partlcular to a characterization of
efficient PGP's with consumption (see Chapter II, Section 2 for
the definition of efficiency).

A shadow 1Interest rate is sald to belong to a PGP if, for
some non-negative price vector, proflt 1s at a maxlimum using the
given program. To be precise, let r and p denote some interest
rate and price vector, respectively, and let (z, ¢, x, g) be a
PGP. The profit 1s proportional to

1l + 'z
(3'1) +r - p'x’

since (1 + g)z 1s the output corresponding to the input x. An
interest rate r is said to belong to the PGP (z, ¢, X, g) if
there 1s some non-negative price vector p such that

1+ g)p'z
l+pr

1l + 'z
+r

A

(3.2) - p'x - p'x
for all PGP's (z, ¢, X, g).- A PGP may have more than one in-
terest rate belonging to 1t, or none.

Condition (3.2) can be reformulated as follows, if there
are constant returns to scale. The left side of (3.2) must be

non-positive, for every program different from the given program,
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because, 1f it were positive, then it could be made arbitrarily
large by increasing the scale of production. By continulty, the
right side must therefore also be non-positive. On the other

hand, if the right side of (3.2) were strictly negative, then it
could be increased (algebrailcally) by decreasing the scale of

production. Hence the right side of (3.2), i.e. the profit for
the given program, must be zero. Condition (3.2) can now be re-

formulated
==,z o
1l + _p z B'% = 0
l+1r
(3.3)
=, _
(1+g)p'z _ 5y <o.
l1+r

We see, in particular, that r 18 an interest rate belonging
to some PGP, if and only if (p,r) is an equilibrium price-
interest pair, and the PGP to which it belongs gives zero profit
[see (2.2)].

Suppose that the production possibllity set :T'is defined
by the Linear Activity Analysis model of Chapter I, Sectlon 5,
which, incidentally, satisfies assumptions (1)-(vi) of Section 2
of the present chapter. MALINVAUD has shown that, in this case,
if an efficient PGP has an lnput vector x with all positive co-
ordinates (x > 0), then the largest rate of interest belonging
to the program is greater than the growth rate of the program.

It is of some interest to compare the present theorem with
the von Neumann theorem described in the previous section. In
the von Neumann case the rate of growth of the fastest growing
PGP is an interest rate belonging to it and typlically the only
one, i.e., the largest interest rate equals the rate of growth.
However, this does not contradict the present result, because in

the von Neumann case consumption c is zero although some stocks

z, are positive, so that the von Neumann PGP 1s not efficient 1in
the sense used in this section.



4. Do Optimal Programs Tend Towards Proportional Growth
in the Long Run?

One may say that the program {p(t), c(t), x(ti} tends
towards the non-zero proportional growth program (z, ¢, x, g)
in the long run, if

lim _zg—t—L€= Zz

t o0 (1+ g)

(4.1) 1im __ELEl_E =c

t—seo (1+ g)

1lim I_ELEIYE = X.

t—ao(1l+ g

In thls case g is the long-run, or asymptotic, growth rate of
the program.

In Chapter IV we saw that the optimal programs for that
somewhat speclal model could tend towards PGP's under certain
conditions. The questlon arises whether this phenomenon general-
izes to other models. To my knowledge, theorems of this type for
fairly general production possibllity sets have been obtained
only in the case of consumptionless programs, although the theo-
rem8 of Chapter IV suggest that the phenomenon 1s more general.
It would appear, however, that the condition of constant returns
to scale is crucial here, at least for asymptotic proportional
growth at a constant rate.

I will present one theorem along these lines (see RADNER).
For other theorems the reader should consult MORISHIMA, McKENZIE,
and the papers referred to there. 1In all of these theorems on
consumptionless programs, the PGP to which the optimal programs
tend 18 (or is related to) the fastest growling PGP of the von
Neumann theorem. Because of this, such results have been called
"turnpike theorems", the "turnpike" belng the expansion path of
the von Neumann PGP.

I have already noted that the concepts of efficlency and
optimality introduced in Chapter II cannot be directly applied
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to cholces among consumptionless programs. However, the same
criteria can be defined in terms of final stocks z(T) at the
horlizon T, instead of in terms of consumption. For example, I
will say that a feasible consumptionless program z(0),...,z(T)
18 efficient for final stocks, given the initilal stock z(0), 1if
there 18 no other feasible program z(0),...,z(T) such that

z(0)

WA

z(0),
(4.2)

z(T) z(T).

Iy

Let X be the input vector for the fastest growing PGP (which
I will suppose here to be unique up to multiplication by positive
numbers), and call the set of all non-negative multiples of X the
von Neumann ray.+ The fastest growlng PGP will expand along the
von Neumann ray. The "turnplke theorem" to be presented here
states that, roughly speaking, if the horizon T 1s sufficiently
far away, then the path of outputs for any program that 1s effl-
cient for final stocks will spend most of the time near the von
Neumann ray. This situation 1s depicted in Figure 1, for the
case of two commodities.

N - z(T)

5>

z(0)

Figure 1

In the figure, the line through the point % 18 the von
Neumann ray, and the curved path from z(0) to z(T) represents
an efficient program starting from z(0).

*This 18 in